Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-counting function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Inequalities== [[Srinivasa Ramanujan|Ramanujan]]<ref>{{Cite book|url=https://books.google.com/books?id=QoMHCAAAQBAJ|title=Ramanujan's Notebooks, Part IV|last=Berndt|first=Bruce C.|date=2012-12-06|pages=112β113|publisher=Springer Science & Business Media|isbn=9781461269328|language=en}}</ref> proved that the inequality :<math>\pi(x)^2 < \frac{ex}{\log x} \pi\left( \frac{x}{e} \right)</math> holds for all sufficiently large values of {{mvar|x}}. Here are some useful inequalities for {{math|''Ο''(''x'')}}. :<math> \frac x {\log x} < \pi(x) < 1.25506 \frac x {\log x} \quad \text{for }x \ge 17.</math> The left inequality holds for {{math|''x'' β₯ 17}} and the right inequality holds for {{math|''x'' > 1}}. The constant {{#expr:30*ln(113)/113 round 5}} is {{math|30{{sfrac|log 113|113}}}} to 5 decimal places, as {{math|''Ο''(''x'') {{sfrac|log ''x''|''x''}}}} has its maximum value at {{math|1=''x'' = ''p''<sub>30</sub> = 113}}.<ref name=Rosser1962>{{Cite journal | author-link = J. Barkley Rosser | last1 = Rosser | first1 = J. Barkley | last2 = Schoenfeld | first2 = Lowell | title = Approximate formulas for some functions of prime numbers | journal = [[Illinois J. Math.]] | year = 1962 | volume = 6 | pages = 64β94 | doi = 10.1215/ijm/1255631807 | zbl = 0122.05001 | issn = 0019-2082 | url = https://projecteuclid.org/euclid.ijm/1255631807 | doi-access = free }}</ref> [[Pierre Dusart]] proved in 2010:<ref name = "Dusart2010">{{cite arXiv |last = Dusart |first = Pierre |author-link = Pierre Dusart |eprint=1002.0442v1 |title = Estimates of Some Functions Over Primes without R.H. |class = math.NT |date = 2 Feb 2010 }}</ref> :<math> \frac {x} {\log x - 1} < \pi(x) < \frac {x} {\log x - 1.1}\quad \text{for }x \ge 5393 \text{ and }x \ge 60184,\text{ respectively.}</math> More recently, Dusart has proved<ref>{{cite journal |last = Dusart |first = Pierre |author-link = Pierre Dusart |title = Explicit estimates of some functions over primes |journal = Ramanujan Journal |volume = 45 |issue = 1 |pages=225β234 |date = January 2018 |doi = 10.1007/s11139-016-9839-4|s2cid = 125120533 }}</ref> (Theorem 5.1) that :<math>\frac{x}{\log x} \left( 1 + \frac{1}{\log x} + \frac{2}{\log^2 x} \right) \le \pi(x) \le \frac{x}{\log x} \left( 1 + \frac{1}{\log x} + \frac{2}{\log^2 x} + \frac{7.59}{\log^3 x} \right),</math> for {{math|''x'' β₯ 88789}} and {{math|''x'' > 1}}, respectively. Going in the other direction, an approximation for the {{mvar|n}}th prime, {{mvar|p<sub>n</sub>}}, is :<math>p_n = n \left(\log n + \log\log n - 1 + \frac {\log\log n - 2}{\log n} + O\left( \frac {(\log\log n)^2} {(\log n)^2}\right)\right).</math> Here are some inequalities for the {{mvar|n}}th prime. The lower bound is due to Dusart (1999)<ref>{{cite journal | author-link=Pierre Dusart | last = Dusart | first = Pierre | date = January 1999 | title = The ''k<sup>th</sup>'' prime is greater than ''k''(ln ''k'' + ln ln ''k'' β 1) for ''k'' β₯ 2 | journal = Mathematics of Computation | volume = 68 | issue = 225 | pages = 411β415 | doi = 10.1090/S0025-5718-99-01037-6 | doi-access = free | bibcode = 1999MaCom..68..411D | url = https://www.ams.org/mcom/1999-68-225/S0025-5718-99-01037-6/S0025-5718-99-01037-6.pdf }}</ref> and the upper bound to Rosser (1941).<ref>{{cite journal | first = Barkley | last = Rosser | author-link = J. Barkley Rosser | date = January 1941 | title = Explicit bounds for some functions of prime numbers | jstor = 2371291 | journal = American Journal of Mathematics | volume = 63 | issue = 1 | pages = 211β232 | doi = 10.2307/2371291 }}</ref> :<math> n (\log n + \log\log n - 1) < p_n < n (\log n + \log\log n)\quad \text{for } n \ge 6.</math> The left inequality holds for {{math|''n'' β₯ 2}} and the right inequality holds for {{math|''n'' β₯ 6}}. A variant form sometimes seen substitutes <math>\log n +\log\log n = \log(n \log n).</math> An even simpler lower bound is<ref name=Rosser62>{{cite journal | title = Approximate formulas for some functions of prime numbers | first1 = J. Barkley | last1 = Rosser | author1-link = J. Barkley Rosser | first2 = Lowell | last2 = Schoenfeld | author2-link = Lowell Schoenfeld | journal = Illinois Journal of Mathematics | volume = 6 | issue = 1 | pages = 64β94 | date = March 1962 | doi = 10.1215/ijm/1255631807 }}</ref> :<math>n \log n < p_n,</math> which holds for all {{math|''n'' β₯ 1}}, but the lower bound above is tighter for {{math|''n'' > ''e<sup>e</sup>'' ≈{{#expr:exp(exp(1)) round 3}}}}. In 2010 Dusart proved<ref name = "Dusart2010" /> (Propositions 6.7 and 6.6) that :<math> n \left( \log n + \log \log n - 1 + \frac{\log \log n - 2.1}{\log n} \right) \le p_n \le n \left( \log n + \log \log n - 1 + \frac{\log \log n - 2}{\log n} \right),</math> for {{math|''n'' β₯ 3}} and {{math|''n'' β₯ 688383}}, respectively. In 2024, Axler<ref>{{cite journal | title = New estimates for the ''n''th prime number | first = Christian | last = Axler | journal = Journal of Integer Sequences | volume = 19 | issue = 4 | article-number = 2 | date = 2019 | orig-date = 23 Mar 2017 | arxiv = 1706.03651 | url = https://cs.uwaterloo.ca/journals/JIS/VOL22/Axler/axler17.html }}</ref> further tightened this (equations 1.12 and 1.13) using bounds of the form :<math> f(n,g(w)) = n \left( \log n + \log\log n - 1 + \frac{\log\log n - 2}{\log n} - \frac{g(\log\log n)}{2\log^2 n} \right)</math> proving that :<math> f(n, w^2 - 6w + 11.321) \le p_n \le f(n, w^2 - 6w)</math> for {{math|''n'' β₯ 2}} and {{math|''n'' β₯ 3468}}, respectively. The lower bound may also be simplified to {{math|''f''(''n'', ''w''<sup>2</sup>)}} without altering its validity. The upper bound may be tightened to {{math|''f''(''n'', ''w''<sup>2</sup> β 6''w'' + 10.667)}} if {{math|''n'' β₯ 46254381}}. There are additional bounds of varying complexity.<ref>{{cite web | title = Bounds for ''n''-th prime | url = https://math.stackexchange.com/questions/1270814/bounds-for-n-th-prime | date = 31 December 2015 | website = Mathematics StackExchange }}</ref><ref>{{cite journal | title = New Estimates for Some Functions Defined Over Primes | first = Christian | last = Axler | journal = Integers | volume = 18 | article-number = A52 | doi = 10.5281/zenodo.10677755 | doi-access = free | date = 2018 | orig-date = 23 Mar 2017 | arxiv = 1703.08032 | url = https://math.colgate.edu/~integers/s52/s52.pdf }}</ref><ref>{{cite journal | title = Effective Estimates for Some Functions Defined over Primes | first = Christian | last = Axler | journal = Integers | volume = 24 | article-number = A34 | doi = 10.5281/zenodo.10677755 | doi-access = free | date = 2024 | orig-date = 11 Mar 2022 | arxiv = 2203.05917 | url = https://math.colgate.edu/~integers/y34/y34.pdf }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)