Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime number theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Non-asymptotic bounds on the prime-counting function == {{main|Prime-counting function#Inequalities}} The prime number theorem is an ''asymptotic'' result. It gives an [[Effective results in number theory|ineffective]] bound on {{math|''π''(''x'')}} as a direct consequence of the definition of the limit: for all {{math|''ε'' > 0}}, there is an {{mvar|S}} such that for all {{math|''x'' > ''S''}}, : <math> (1-\varepsilon)\frac {x}{\log x} \; < \; \pi(x) \; < \; (1+\varepsilon)\frac {x}{\log x} \; .</math> However, better bounds on {{math|''π''(''x'')}} are known, for instance [[Pierre Dusart]]'s : <math> \frac{x}{\log x}\left(1+\frac{1}{\log x}\right) \; < \; \pi(x) \; < \; \frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{2.51}{(\log x)^2}\right) \; .</math> The first inequality holds for all {{math|''x'' ≥ 599}} and the second one for {{math|''x'' ≥ 355991}}.<ref>{{cite thesis |last=Dusart |first=Pierre |author-link=Pierre Dusart |date=26 May 1998 |title=Autour de la fonction qui compte le nombre de nombres premiers |trans-title=About the prime-counting function |degree=Ph.D. |place=Limoges, France |publisher=l'Université de Limoges |department=département de Mathématiques |url=https://www.unilim.fr/pages_perso/pierre.dusart/Documents/T1998_01.pdf |lang=fr}}</ref> The proof by de la Vallée Poussin implies the following bound: For every {{math|''ε'' > 0}}, there is an {{mvar|S}} such that for all {{math|''x'' > ''S''}}, : <math>\frac {x}{\log x - (1 - \varepsilon)} \; < \; \pi(x) \; < \; \frac {x}{\log x - (1+\varepsilon)} \; .</math> The value {{math|''ε'' {{=}} 3}} gives a weak but sometimes useful bound for {{math|''x'' ≥ 55}}:<ref name="rosser">{{cite journal |first=Barkley |last=Rosser |author-link=J. Barkley Rosser |year=1941 |title=Explicit bounds for some functions of prime numbers |journal=[[American Journal of Mathematics]] |volume=63 |issue=1 |pages=211–232 |doi=10.2307/2371291 |jstor=2371291 |mr=0003018}}</ref> : <math> \frac {x}{\log x + 2} \; < \; \pi(x) \; < \; \frac {x}{\log x - 4} \; .</math> In Pierre Dusart's thesis there are stronger versions of this type of inequality that are valid for larger {{mvar|x}}. Later in 2010, Dusart proved:<ref>{{cite arXiv |last=Dusart |first=Pierre |author-link=Pierre Dusart |date=2 February 2010 |title=Estimates of some functions over primes, without {{abbr|R.H.|Riemann hypothesis}} |eprint=1002.0442 |class=math.NT}}</ref> : <math>\begin{align} \frac {x}{\log x - 1} \; &< \; \pi(x) &&\text{ for } x \ge 5393 \;, \text{ and }\\ \pi(x) &< \; \frac {x} {\log x - 1.1} &&\text{ for } x \ge 60184 \; . \end{align}</math> Note that the first of these obsoletes the {{math|''ε'' > 0}} condition on the lower bound.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)