Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Principal component analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Table of symbols and abbreviations == {| class="wikitable" |- ! Symbol ! Meaning ! Dimensions ! Indices |- | <math>\mathbf{X} = [ X_{ij} ]</math> | data matrix, consisting of the set of all data vectors, one vector per row | <math> n \times p</math> | <math> i = 1 \ldots n </math> <br /> <math> j = 1 \ldots p </math> |- | <math>n </math> | the number of row vectors in the data set | <math>1 \times 1</math> | ''scalar'' |- | <math>p </math> | the number of elements in each row vector (dimension) | <math>1 \times 1</math> | ''scalar'' |- | <math>L </math> | the number of dimensions in the dimensionally reduced subspace, <math> 1 \le L \le p </math> | <math>1 \times 1</math> | ''scalar'' |- | <math>\mathbf{u} = [ u_j ]</math> | vector of empirical [[mean]]s, one mean for each column ''j'' of the data matrix | <math> p \times 1</math> | <math> j = 1 \ldots p </math> |- | <math>\mathbf{s} = [ s_j ]</math> | vector of empirical [[standard deviation]]s, one standard deviation for each column ''j'' of the data matrix | <math> p \times 1</math> | <math> j = 1 \ldots p </math> |- | <math>\mathbf{h} = [ h_i ]</math> | vector of all 1's | <math> 1 \times n</math> | <math> i = 1 \ldots n </math> |- | <math>\mathbf{B} = [ B_{ij} ]</math> | [[Standard deviation|deviations]] from the mean of each column ''j'' of the data matrix | <math> n \times p</math> | <math> i = 1 \ldots n </math> <br /> <math> j = 1 \ldots p </math> |- | <math>\mathbf{Z} = [ Z_{ij} ] </math> | [[z-score]]s, computed using the mean and standard deviation for each column ''j'' of the data matrix | <math> n \times p</math> | <math> i = 1 \ldots n </math> <br /> <math> j = 1 \ldots p </math> |- | <math>\mathbf{C} = [ C_{jj'} ] </math> | [[covariance matrix]] | <math> p \times p </math> | <math> j = 1 \ldots p </math> <br /><math> j' = 1 \ldots p </math> |- | <math>\mathbf{R} = [ R_{jj'} ] </math> | [[correlation matrix]] | <math> p \times p </math> | <math> j = 1 \ldots p </math> <br /><math> j' = 1 \ldots p </math> |- | <math> \mathbf{V} = [ V_{jj'} ] </math> | matrix consisting of the set of all [[eigenvectors]] of '''C''', one eigenvector per column | <math> p \times p </math> | <math> j = 1 \ldots p </math> <br /><math> j' = 1 \ldots p </math> |- | <math>\mathbf{D} = [ D_{jj'} ] </math> | [[diagonal matrix]] consisting of the set of all [[eigenvalues]] of '''C''' along its [[principal diagonal]], and 0 for all other elements ( note <math>\mathbf{\Lambda}</math> used above ) | <math> p \times p </math> | <math> j = 1 \ldots p </math> <br /><math> j' = 1 \ldots p </math> |- | <math>\mathbf{W} = [ W_{jl} ] </math> | matrix of basis vectors, one vector per column, where each basis vector is one of the eigenvectors of '''C''', and where the vectors in '''W''' are a sub-set of those in '''V''' | <math> p \times L</math> | <math> j = 1 \ldots p </math> <br /><math> l = 1 \ldots L</math> |- | <math>\mathbf{T} = [ T_{il} ] </math> | matrix consisting of ''n'' row vectors, where each vector is the projection of the corresponding data vector from matrix '''X''' onto the basis vectors contained in the columns of matrix '''W'''. | <math> n \times L</math> | <math> i = 1 \ldots n </math> <br /><math> l = 1 \ldots L</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)