Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Profinite group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Procyclic group== A profinite group <math>G</math> is {{em|{{visible anchor|procyclic group|procyclic|text=procyclic}}}} if it is topologically generated by a single element <math>\sigma;</math> that is, if <math>G = \overline{\langle \sigma \rangle},</math> the closure of the subgroup <math>\langle \sigma \rangle = \left\{\sigma^n: n \in \Z\right\}.</math><ref>{{Cite book|last=Neukirch|first=Jürgen|url=http://link.springer.com/10.1007/978-3-662-03983-0|title=Algebraic Number Theory|date=1999|publisher=Springer Berlin Heidelberg|isbn=978-3-642-08473-7|series=Grundlehren der mathematischen Wissenschaften|volume=322|location=Berlin, Heidelberg|doi=10.1007/978-3-662-03983-0}}</ref> A topological group <math>G</math> is procyclic if and only if <math>G \cong {\textstyle\prod\limits_{p\in S}} G_p</math> where <math>p</math> ranges over some set of [[prime number]]s <math>S</math> and <math>G_p</math> is isomorphic to either <math>\Z_p</math> or <math>\Z/p^n \Z, n \in \N.</math><ref>{{Cite web|url=https://mathoverflow.net/questions/247731/decomposition-of-procyclic-groups|title=MO. decomposition of procyclic groups|website=MathOverflow}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)