Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pseudo-differential operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further reading== * Nicolas Lerner, ''Metrics on the phase space and non-selfadjoint pseudo-differential operators''. Pseudo-Differential Operators. Theory and Applications, 3. Birkhäuser Verlag, Basel, 2010. * [[Michael E. Taylor]], Pseudodifferential Operators, Princeton Univ. Press 1981. {{ISBN|0-691-08282-0}} * M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag 2001. {{ISBN|3-540-41195-X}} * [[Francois Treves]], Introduction to Pseudo Differential and Fourier Integral Operators, (University Series in Mathematics), Plenum Publ. Co. 1981. {{ISBN|0-306-40404-4}} * F. G. Friedlander and M. Joshi, Introduction to the Theory of Distributions, Cambridge University Press 1999. {{ISBN|0-521-64971-4}} * {{cite book |first=Lars |last=Hörmander |authorlink= Lars Hörmander |title=The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators |year=1987 |publisher=Springer |isbn=3-540-49937-7}} <!-- * Ingerman D.V. and Morrow J.A., [http://www.math.washington.edu/~morrow/papers/imrev.pdf "On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region"], ''SIAM J. Math. Anal.'' 1998, vol. 29, no. 1, pp. 106–115 (electronic). --> * André Unterberger, ''Pseudo-differential operators and applications: an introduction''. Lecture Notes Series, 46. Aarhus Universitet, Matematisk Institut, Aarhus, 1976.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)