Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relative permittivity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Metals == Permittivity is typically associated with [[dielectric materials]], however metals are described as having an effective permittivity, with real relative permittivity equal to one.<ref name=Lourtioz>{{cite book |last=Lourtioz |first=J.-M. |url=https://books.google.com/books?id=vSszZ2WuG_IC&pg=PA121 |title=Photonic Crystals: Towards Nanoscale Photonic Devices |year=2005 |publisher=Springer |isbn=978-3-540-24431-8 |display-authors=etal |pages=121β122}} equation (4.6), page 121</ref> In the high-frequency region, which extends from radio frequencies to the far [[infrared]] and [[Terahertz radiation|terahertz]] region, the plasma frequency of the electron gas is much greater than the electromagnetic propagation frequency, so the refractive index ''n'' of a metal is very nearly a purely imaginary number. In the low frequency regime, the effective relative permittivity is also almost purely imaginary: It has a very large imaginary value related to the conductivity and a comparatively insignificant real-value.<ref>Lourtioz (2005), equations (4.8)β(4.9), page 122</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)