Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reverse mathematics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Stronger systems=== Over RCA<sub>0</sub>, '''Π{{su|p=1|b=1}}''' transfinite recursion, '''∆{{su|p=0|b=2}}''' determinacy, and the '''∆{{su|p=1|b=1}}''' Ramsey theorem are all equivalent to each other. Over RCA<sub>0</sub>, '''Σ{{su|p=1|b=1}}''' monotonic induction, '''Σ{{su|p=0|b=2}}''' determinacy, and the '''Σ{{su|p=1|b=1}}''' Ramsey theorem are all equivalent to each other. The following are equivalent:<ref>{{cite conference |conference=LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science |date=2016 |title=How unprovable is Rabin's decidability theorem? |first1=Leszek |last1=Kołodziejczyk |first2=Henryk |last2=Michalewski |arxiv=1508.06780 }}</ref><ref>{{cite web |last=Kołodziejczyk |first=Leszek |url = https://cs.nyu.edu/pipermail/fom/2015-October/019257.html |title=Question on Decidability of S2S |publisher=FOM |date=October 19, 2015}}</ref> * (schema) Π{{su|p=1|b=3}} consequences of Π{{su|p=1|b=2}}-CA<sub>0</sub> * RCA<sub>0</sub> + (schema over finite ''n'') determinacy in the ''n''th level of the difference hierarchy of '''Σ{{su|p=0|b=2}}''' sets * RCA<sub>0</sub> + {τ: τ is a true [[S2S (mathematics)|S2S]] sentence} The set of Π{{su|p=1|b=3}} consequences of second-order arithmetic Z<sub>2</sub> has the same theory as RCA<sub>0</sub> + (schema over finite ''n'') determinacy in the ''n''th level of the difference hierarchy of '''Σ{{su|p=0|b=3}}''' sets.<ref>{{cite journal |first1=Antonio |last1=Montalban |first2=Richard |last2=Shore |title=The limits of determinacy in second order arithmetic: consistency and complexity strength | journal=[[Israel Journal of Mathematics]] |volume=204 |year=2014 | pages=477–508 |doi=10.1007/s11856-014-1117-9 | doi-access=|s2cid=287519 }}</ref> For a [[poset]] <math>P</math>, let <math>\textrm{MF}(P)</math> denote the topological space consisting of the filters on <math>P</math> whose open sets are the sets of the form <math>\{F\in\textrm{MF}(P)\mid p\in F\}</math> for some <math>p\in P</math>. The following statement is equivalent to <math>\Pi^1_2\mathsf{-CA}_0</math> over <math>\Pi^1_1\mathsf{-CA}_0</math>: for any countable poset <math>P</math>, the topological space <math>\textrm{MF}(P)</math> is [[Completely metrizable space|completely metrizable]] iff it is [[Regular topological space|regular]].<ref>C. Mummert, S. G. Simpson. "Reverse mathematics and <math>\Pi^1_2</math> comprehension". In ''Bulletin of Symbolic Logic'' vol. 11 (2005), pp.526–533.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)