Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Various properties== For sums involving the zeta function at integer and [[half-integer]] values, see [[rational zeta series]]. ===Reciprocal=== The reciprocal of the zeta function may be expressed as a [[Dirichlet series]] over the [[Möbius function]] {{math|''μ''(''n'')}}: :<math>\frac{1}{\zeta(s)} = \sum_{n=1}^\infty \frac{\mu(n)}{n^s}</math> for every complex number {{mvar|s}} with real part greater than 1. There are a number of similar relations involving various well-known [[multiplicative function]]s; these are given in the article on the [[Dirichlet series]]. <!--The paragraph below needs to be explained better; we need a section on RH equivalents. --> The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of {{mvar|s}} is greater than {{sfrac|1|2}}. ===Universality=== The critical strip of the Riemann zeta function has the remarkable property of '''universality'''. This [[zeta function universality]] states that there exists some location on the critical strip that approximates any [[holomorphic function]] arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided by Sergei Mikhailovitch Voronin in 1975.<ref>{{cite journal|last=Voronin|first=S. M.|date=1975|title=Theorem on the Universality of the Riemann Zeta Function|journal=Izv. Akad. Nauk SSSR, Ser. Matem.|volume=39|pages=475–486}} Reprinted in ''Math. USSR Izv.'' (1975) '''9''': 443–445.</ref> More recent work has included [[Zeta function universality#Effective universality|effective]] versions of Voronin's theorem<ref>{{ cite journal |author1=Ramūnas Garunkštis |author2=Antanas Laurinčikas |author3=Kohji Matsumoto |author4=Jörn Steuding |author5=Rasa Steuding |title=Effective uniform approximation by the Riemann zeta-function |journal=Publicacions Matemàtiques |date=2010 |volume=54 |issue=1 |pages=209–219 |doi=10.5565/PUBLMAT_54110_12 |jstor=43736941 |url=http://ddd.uab.cat/record/52304 }}</ref> and [[Zeta function universality#Universality of other zeta functions|extending]] it to [[Dirichlet L-function]]s.<ref>{{ cite journal |author=Bhaskar Bagchi |title=A Joint Universality Theorem for Dirichlet L-Functions |journal=Mathematische Zeitschrift |issn=0025-5874 |volume=181 |issue=3 |date=1982 |pages=319–334 |doi=10.1007/bf01161980|s2cid=120930513 }}</ref><ref>{{cite book |last=Steuding |first=Jörn |date=2007 |title=Value-Distribution of L-Functions |volume=1877 |location=Berlin |publisher=Springer |page=19 |isbn=978-3-540-26526-9 |series=Lecture Notes in Mathematics |doi=10.1007/978-3-540-44822-8|arxiv=1711.06671 }}</ref> ===Estimates of the maximum of the modulus of the zeta function=== Let the functions {{math|''F''(''T'';''H'')}} and {{math|''G''(''s''<sub>0</sub>;Δ)}} be defined by the equalities : <math> F(T;H) = \max_{|t-T|\le H}\left|\zeta\left(\tfrac{1}{2}+it\right)\right|,\qquad G(s_{0};\Delta) = \max_{|s-s_{0}|\le\Delta}|\zeta(s)|. </math> Here {{mvar|T}} is a sufficiently large positive number, {{math|0 < ''H'' ≪ log log ''T''}}, {{math|''s''<sub>0</sub> {{=}} ''σ''<sub>0</sub> + ''iT''}}, {{math|{{sfrac|1|2}} ≤ ''σ''<sub>0</sub> ≤ 1}}, {{math|0 < Δ < {{sfrac|1|3}}}}. Estimating the values {{mvar|F}} and {{mvar|G}} from below shows, how large (in modulus) values {{math|''ζ''(''s'')}} can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip {{math|0 ≤ Re(''s'') ≤ 1}}. The case {{math|''H'' ≫ log log ''T''}} was studied by [[Kanakanahalli Ramachandra]]; the case {{math|Δ > ''c''}}, where {{math|''c''}} is a sufficiently large constant, is trivial. [[Anatolii Alexeevitch Karatsuba|Anatolii Karatsuba]] proved,<ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of {{math|''ζ''(''s'')}} in small domains of the critical strip | pages=796–798| journal= Mat. Zametki| volume=70|issue=5| year=2001}}</ref><ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line| pages=99–104| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=68|issue=8| year=2004| doi=10.1070/IM2004v068n06ABEH000513| bibcode=2004IzMat..68.1157K| s2cid=250796539}}</ref> in particular, that if the values {{mvar|H}} and {{math|Δ}} exceed certain sufficiently small constants, then the estimates : <math> F(T;H) \ge T^{- c_1},\qquad G(s_0; \Delta) \ge T^{-c_2}, </math> hold, where {{math|''c''<sub>1</sub>}} and {{math|''c''<sub>2</sub>}} are certain absolute constants. ===The argument of the Riemann zeta function=== The function :<math>S(t) = \frac{1}{\pi}\arg{\zeta\left(\tfrac12+it\right)}</math> is called the [[complex argument|argument]] of the Riemann zeta function. Here {{math|arg ''ζ''({{sfrac|1|2}} + ''it'')}} is the increment of an arbitrary continuous branch of {{math|arg ''ζ''(''s'')}} along the broken line joining the points {{math|2}}, {{math|2 + ''it''}} and {{math|{{sfrac|1|2}} + ''it''}}. There are some theorems on properties of the function {{math|''S''(''t'')}}. Among those results<ref>{{cite journal |first=A. A. |last=Karatsuba |title=Density theorem and the behavior of the argument of the Riemann zeta function |pages=448–449 |journal=Mat. Zametki |issue=60 |year=1996}}</ref><ref>{{cite journal |first=A. A. |last=Karatsuba |title=On the function {{math|''S''(''t'')}}| pages=27–56| journal= Izv. Ross. Akad. Nauk, Ser. Mat. |volume=60 |issue=5 |year=1996}}</ref> are the [[Mean value theorems for definite integrals|mean value theorems]] for {{math|''S''(''t'')}} and its first integral :<math>S_1(t) = \int_0^t S(u) \, \mathrm{d}u</math> on intervals of the real line, and also the theorem claiming that every interval {{math|(''T'', ''T'' + ''H'']}} for :<math>H \ge T^{\frac{27}{82}+\varepsilon}</math> contains at least : <math> H\sqrt[3]{\ln T}e^{-c\sqrt{\ln\ln T}} </math> points where the function {{math|''S''(''t'')}} changes sign. Earlier similar results were obtained by [[Atle Selberg]] for the case :<math>H\ge T^{\frac12+\varepsilon}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)