Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sliding mode control
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Control design examples== * Consider a [[plant (control theory)|plant]] described by Equation ({{EquationNote|1}}) with single input {{mvar|u}} (i.e., <math>m = 1</math>). The switching function is ''picked'' to be the linear combination {| border="0" width="75%" |- | align="left" | {{NumBlk|::|<math> \sigma(\mathbf{x}) \triangleq s_1 x_1 + s_2 x_2 + \cdots + s_{n-1} x_{n-1} + s_n x_n </math> | {{EquationRef|4}}}} |} :where the weight <math>s_i > 0</math> for all <math>1 \leq i \leq n</math>. The sliding surface is the [[simplex]] where <math>\sigma(\mathbf{x})=0</math>. When trajectories are forced to slide along this surface, ::<math>\dot{\sigma}(\mathbf{x}) = 0</math> :and so ::<math>s_1 \dot{x}_1 + s_2 \dot{x}_2 + \cdots + s_{n-1} \dot{x}_{n-1} + s_n \dot{x}_n = 0</math> :which is a reduced-order system (i.e., the new system is of order <math>n-1</math> because the system is constrained to this <math>(n-1)</math>-dimensional sliding mode simplex). This surface may have favorable properties (e.g., when the plant dynamics are forced to slide along this surface, they move toward the origin <math>\mathbf{x}=\mathbf{0}</math>). Taking the derivative of the [[Lyapunov function]] in Equation ({{EquationNote|3}}), we have ::<math> \dot{V}(\sigma(\mathbf{x})) = \overbrace{\sigma(\mathbf{x})^{\text{T}}}^{\tfrac{\partial V}{\partial \mathbf{x}}} \overbrace{\dot{\sigma}(\mathbf{x})}^{\tfrac{\operatorname{d} \sigma}{\operatorname{d} t}}</math> :To ensure <math>\dot{V} < 0</math>, the feedback control law <math>u(\mathbf{x})</math> must be chosen so that ::<math>\begin{cases} \dot{\sigma} < 0 &\text{if } \sigma > 0\\ \dot{\sigma} > 0 &\text{if } \sigma < 0 \end{cases}</math> :Hence, the product <math>\sigma \dot{\sigma} < 0</math> because it is the product of a negative and a positive number. Note that {| border="0" width="75%" |- | align="left" | {{NumBlk|::|<math>\dot{\sigma}(\mathbf{x}) = \overbrace{\frac{\partial{\sigma(\mathbf{x})}}{\partial{\mathbf{x}}} \dot{\mathbf{x}}}^{\dot{\sigma}(\mathbf{x})} = \frac{\partial{\sigma(\mathbf{x})}}{\partial{\mathbf{x}}} \overbrace{\left( f(\mathbf{x},t) + B(\mathbf{x},t) u \right)}^{\dot{\mathbf{x}}} = \overbrace{[s_1, s_2, \ldots, s_n]}^{\frac{\partial{\sigma(\mathbf{x})}}{\partial{\mathbf{x}}}} \underbrace{\overbrace{\left( f(\mathbf{x},t) + B(\mathbf{x},t) u \right)}^{\dot{\mathbf{x}}}}_{\text{( i.e., an } n \times 1 \text{ vector )}}</math> | {{EquationRef|5}}}} |} :The control law <math>u(\mathbf{x})</math> is chosen so that ::<math>u(\mathbf{x}) = \begin{cases} u^+(\mathbf{x}) &\text{if } \sigma(\mathbf{x}) > 0 \\ u^-(\mathbf{x}) &\text{if } \sigma(\mathbf{x}) < 0 \end{cases}</math> :where :* <math>u^+(\mathbf{x})</math> is some control (e.g., possibly extreme, like "on" or "forward") that ensures Equation ({{EquationNote|5}}) (i.e., <math>\dot{\sigma}</math>) is ''negative'' at <math>\mathbf{x}</math> :* <math>u^-(\mathbf{x})</math> is some control (e.g., possibly extreme, like "off" or "reverse") that ensures Equation ({{EquationNote|5}}) (i.e., <math>\dot{\sigma}</math>) is ''positive'' at <math>\mathbf{x}</math> :The resulting trajectory should move toward the sliding surface where <math>\sigma(\mathbf{x})=0</math>. Because real systems have delay, sliding mode trajectories often ''chatter'' back and forth along this sliding surface (i.e., the true trajectory may not smoothly follow <math>\sigma(\mathbf{x})=0</math>, but it will always return to the sliding mode after leaving it). * Consider the [[dynamic system]] ::<math>\ddot{x}=a(t,x,\dot{x})+u</math> :which can be expressed in a 2-dimensional [[state space (controls)|state space]] (with <math>x_1 = x</math> and <math>x_2 = \dot{x}</math>) as ::<math> \begin{cases} \dot{x}_1 = x_2\\ \dot{x}_2 = a(t,x_1,x_2) + u \end{cases}</math> :Also assume that <math>\sup\{ |a(\cdot)| \} \leq k</math> (i.e., <math>|a|</math> has a finite upper bound {{mvar|k}} that is known). For this system, choose the switching function ::<math>\sigma(x_1,x_2)= x_1 + x_2 = x + \dot{x}</math> :By the previous example, we must choose the feedback control law <math>u(x,\dot{x})</math> so that <math>\sigma \dot{\sigma} < 0</math>. Here, ::<math>\dot{\sigma} = \dot{x}_1 + \dot{x}_2 = \dot{x} + \ddot{x} = \dot{x}\,+\,\overbrace{a(t,x,\dot{x})+ u}^{\ddot{x}}</math> :* When <math>x + \dot{x} < 0</math> (i.e., when <math>\sigma < 0</math>), to make <math>\dot{\sigma} > 0</math>, the control law should be picked so that <math>u > |\dot{x} + a(t,x,\dot{x})|</math> :* When <math>x + \dot{x} > 0</math> (i.e., when <math>\sigma > 0</math>), to make <math>\dot{\sigma} < 0</math>, the control law should be picked so that <math>u < -|\dot{x} + a(t,x,\dot{x})|</math> :However, by the [[triangle inequality]], ::<math>|\dot{x}| + |a(t,x,\dot{x})| \geq |\dot{x} + a(t,x,\dot{x})|</math> :and by the assumption about <math>|a|</math>, ::<math>|\dot{x}| + k + 1 > |\dot{x}| + |a(t,x,\dot{x})|</math> :So the system can be feedback stabilized (to return to the sliding mode) by means of the control law ::<math>u(x,\dot{x}) = \begin{cases} |\dot{x}| + k + 1 &\text{if } \underbrace{x + \dot{x}} < 0,\\ -\left(|\dot{x}| + k + 1\right) &\text{if } \overbrace{x + \dot{x}}^{\sigma} > 0 \end{cases}</math> :which can be expressed in [[closed-form expression|closed form]] as ::<math>u(x,\dot{x}) = -(|\dot{x}|+k+1) \underbrace{\operatorname{sgn}(\overbrace{\dot{x}+x}^{\sigma})}_{\text{(i.e., tests } \sigma > 0 \text{)}}</math> :Assuming that the system trajectories are forced to move so that <math>\sigma(\mathbf{x})=0</math>, then ::<math>\dot{x} = -x \qquad \text{(i.e., } \sigma(x,\dot{x}) = x + \dot{x} = 0 \text{)}</math> :So once the system reaches the sliding mode, the system's 2-dimensional dynamics behave like this 1-dimensional system, which has a globally exponentially stable [[stationary point|equilibrium]] at <math>(x,\dot{x})=(0,0)</math>. ===Automated design solutions=== Although various theories exist for sliding mode control system design, there is a lack of a highly effective design methodology due to practical difficulties encountered in analytical and numerical methods. A reusable computing paradigm such as a [[genetic algorithm]] can, however, be utilized to transform a 'unsolvable problem' of optimal design into a practically solvable 'non-deterministic polynomial problem'. This results in computer-automated designs for sliding model control.<ref name="GA_SMC96"> {{cite journal |last1=Li |first1=Yun|title=Genetic algorithm automated approach to the design of sliding mode control systems |journal=International Journal of Control |year=1996 |volume=64 |issue=3 |pages=721β739 |doi=10.1080/00207179608921865 |url=https://www.researchgate.net/publication/230602763 |display-authors=etal|citeseerx=10.1.1.43.1654}} </ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)