Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cyclic vectors and simple spectrum=== A vector <math>\varphi</math> is called a [[cyclic vector]] for <math>A</math> if the vectors <math>\varphi,A\varphi,A^2\varphi,\ldots</math> span a dense subspace of the Hilbert space. Suppose <math>A</math> is a bounded self-adjoint operator for which a cyclic vector exists. In that case, there is no distinction between the direct-integral and multiplication-operator formulations of the spectral theorem. Indeed, in that case, there is a measure <math>\mu</math> on the spectrum <math>\sigma(A)</math> of <math>A</math> such that <math>A</math> is unitarily equivalent to the "multiplication by <math>\lambda</math>" operator on <math>L^2(\sigma(A),\mu)</math>.<ref>{{harvnb|Hall|2013}} Lemma 8.11</ref> This result represents <math>A</math> simultaneously as a multiplication operator ''and'' as a direct integral, since <math>L^2(\sigma(A),\mu)</math> is just a direct integral in which each Hilbert space <math>H_{\lambda}</math> is just <math>\mathbb{C}</math>. Not every bounded self-adjoint operator admits a cyclic vector; indeed, by the uniqueness in the direct integral decomposition, this can occur only when all the <math>H_{\lambda}</math>'s have dimension one. When this happens, we say that <math>A</math> has "simple spectrum" in the sense of [[Self-adjoint operator#Spectral multiplicity theory|spectral multiplicity theory]]. That is, a bounded self-adjoint operator that admits a cyclic vector should be thought of as the infinite-dimensional generalization of a self-adjoint matrix with distinct eigenvalues (i.e., each eigenvalue has multiplicity one). Although not every <math>A</math> admits a cyclic vector, it is easy to see that we can decompose the Hilbert space as a direct sum of invariant subspaces on which <math>A</math> has a cyclic vector. This observation is the key to the proofs of the multiplication-operator and direct-integral forms of the spectral theorem.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)