Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Consistency of SAA estimators==== Suppose the feasible set <math>X</math> of the SAA problem is fixed, i.e., it is independent of the sample. Let <math>\vartheta^*</math> and <math>S^*</math> be the optimal value and the set of optimal solutions, respectively, of the true problem and let <math>\hat{\vartheta}_N</math> and <math>\hat{S}_N</math> be the optimal value and the set of optimal solutions, respectively, of the SAA problem. # Let <math>g: X \rightarrow \mathbb{R}</math> and <math>\hat{g}_N: X \rightarrow \mathbb{R}</math> be a sequence of (deterministic) real valued functions. The following two properties are equivalent: #* for any <math>\overline{x}\in X</math> and any sequence <math>\{x_N\}\subset X</math> converging to <math>\overline{x}</math> it follows that <math>\hat{g}_N(x_N)</math> converges to <math>g(\overline{x})</math> #* the function <math>g(\cdot)</math> is continuous on <math>X</math> and <math>\hat{g}_N(\cdot)</math> converges to <math>g(\cdot)</math> uniformly on any compact subset of <math>X</math> # If the objective of the SAA problem <math>\hat{g}_N(x)</math> converges to the true problem's objective <math>g(x)</math> with probability 1, as <math>N \rightarrow \infty</math>, uniformly on the feasible set <math>X</math>. Then <math>\hat{\vartheta}_N</math> converges to <math>\vartheta^*</math> with probability 1 as <math>N \rightarrow \infty</math>. # Suppose that there exists a compact set <math>C \subset \mathbb{R}^n</math> such that #* the set <math>S</math> of optimal solutions of the true problem is nonempty and is contained in <math>C</math> #* the function <math>g(x)</math> is finite valued and continuous on <math>C</math> #* the sequence of functions <math>\hat{g}_N(x)</math> converges to <math>g(x)</math> with probability 1, as <math>N \rightarrow \infty</math>, uniformly in <math>x\in C</math> #* for <math>N</math> large enough the set <math>\hat{S}_N</math> is nonempty and <math>\hat{S}_N \subset C</math> with probability 1 :: then <math>\hat{\vartheta}_N \rightarrow \vartheta^*</math> and <math>\mathbb{D}(S^*,\hat{S}_N)\rightarrow 0 </math> with probability 1 as <math>N\rightarrow \infty </math>. Note that <math>\mathbb{D}(A,B) </math> denotes the ''deviation of set <math>A</math> from set <math>B</math>'', defined as <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math> \mathbb{D}(A,B) := \sup_{x\in A} \{ \inf_{x' \in B} \|x-x'\| \} </math></div> In some situations the feasible set <math>X</math> of the SAA problem is estimated, then the corresponding SAA problem takes the form <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math> \min_{x\in X_N} \hat{g}_N(x) </math></div> where <math>X_N</math> is a subset of <math>\mathbb{R}^n</math> depending on the sample and therefore is random. Nevertheless, consistency results for SAA estimators can still be derived under some additional assumptions: # Suppose that there exists a compact set <math>C \subset \mathbb{R}^n</math> such that #* the set <math>S</math> of optimal solutions of the true problem is nonempty and is contained in <math>C</math> #* the function <math>g(x)</math> is finite valued and continuous on <math>C</math> #* the sequence of functions <math>\hat{g}_N(x)</math> converges to <math>g(x)</math> with probability 1, as <math>N \rightarrow \infty</math>, uniformly in <math>x\in C</math> #* for <math>N</math> large enough the set <math>\hat{S}_N</math> is nonempty and <math>\hat{S}_N \subset C</math> with probability 1 #* if <math> x_N \in X_N</math> and <math> x_N </math> converges with probability 1 to a point <math> x</math>, then <math> x \in X</math> #* for some point <math> x \in S^*</math> there exists a sequence <math> x_N \in X_N</math> such that <math> x_N \rightarrow x</math> with probability 1. :: then <math>\hat{\vartheta}_N \rightarrow \vartheta^*</math> and <math>\mathbb{D}(S^*,\hat{S}_N)\rightarrow 0 </math> with probability 1 as <math>N\rightarrow \infty </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)