Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
String field theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Covariant closed string field theory == Covariant closed string field theories are considerably more complicated than their open string cousins. Even if one wants to construct a string field theory which only reproduces ''tree-level'' interactions between closed strings, the classical action must contain an ''infinite'' number of vertices <ref>{{cite journal | last1=Sonoda | first1=Hidenori | last2=Zwiebach | first2=Barton | title=Covariant closed string theory cannot be cubic | journal=Nuclear Physics B | publisher=Elsevier BV | volume=336 | issue=2 | year=1990 | issn=0550-3213 | doi=10.1016/0550-3213(90)90108-p | bibcode=1990NuPhB.336..185S | pages=185β221}}</ref> consisting of string polyhedra.<ref>{{cite journal | last1=Saadi | first1=Maha | last2=Zwiebach | first2=Barton | title=Closed string field theory from polyhedra | journal=Annals of Physics | publisher=Elsevier BV | volume=192 | issue=1 | year=1989 | issn=0003-4916 | doi=10.1016/0003-4916(89)90126-7 | bibcode=1989AnPhy.192..213S | pages=213β227}}</ref><ref>{{cite journal | last1=Kugo | first1=Taichiro | last2=Suehiro | first2=Kazuhiro | title=Nonpolynomial closed string field theory: Action and its gauge invariance | journal=Nuclear Physics B | publisher=Elsevier BV | volume=337 | issue=2 | year=1990 | issn=0550-3213 | doi=10.1016/0550-3213(90)90277-k | bibcode=1990NuPhB.337..434K | pages=434β466}}</ref> If one demands that on-shell scattering diagrams be reproduced to all orders in the string coupling, one must also include additional vertices arising from higher genus (and hence higher order in <math> \hbar </math>) as well. In general, a manifestly BV invariant, quantizable action takes the form<ref>{{cite journal | last=Zwiebach | first=Barton | title=Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation | journal=Nuclear Physics B | volume=390 | issue=1 | year=1993 | issn=0550-3213 | doi=10.1016/0550-3213(93)90388-6 | pages=33β152|arxiv=hep-th/9206084| bibcode=1993NuPhB.390...33Z | s2cid=119509701 }}</ref> :: <math> S(\Psi) = \hbar \sum_{g \ge 0} (\hbar g_c)^{g-1} \sum_{n \ge 0} \frac{1}{n!} \{\Psi^n \}_g </math> where <math> \{ \Psi^n \}_g </math> denotes an <math>n</math>th order vertex arising from a genus <math> g </math> surface and <math> g_c </math> is the closed string coupling. The structure of the vertices is in principle determined by a minimal area prescription,<ref>{{cite journal | last=Zwiebach | first=Barton | title=Quantum Closed Strings from Minimal Area | journal=Modern Physics Letters A | publisher=World Scientific Pub Co Pte Lt | volume=05 | issue=32 | date=1990-12-30 | issn=0217-7323 | doi=10.1142/s0217732390003218 | bibcode=1990MPLA....5.2753Z | pages=2753β2762}}</ref> although, even for the polyhedral vertices, explicit computations have only been performed to quintic order.<ref>{{cite journal | last=Moeller | first=Nicolas | title=Closed bosonic string field theory at quintic order: five-tachyon contact term and dilaton theorem | journal=Journal of High Energy Physics | volume=2007 | issue=3 | date=2007-03-12 | issn=1029-8479 | doi=10.1088/1126-6708/2007/03/043 | pages=043|arxiv=hep-th/0609209| bibcode=2007JHEP...03..043M | s2cid=11634790 }}</ref><ref>{{cite journal | last=Moeller | first=Nicolas | title=Closed bosonic string field theory at quintic order II: marginal deformations and effective potential | journal=Journal of High Energy Physics | volume=2007 | issue=9 | date=2007-09-26 | issn=1029-8479 | doi=10.1088/1126-6708/2007/09/118 | pages=118|arxiv=0705.2102| bibcode=2007JHEP...09..118M | s2cid=16383969 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)