Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
String theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bekenstein–Hawking formula === In the branch of physics called [[statistical mechanics]], [[entropy]] is a measure of the randomness or disorder of a physical system. This concept was studied in the 1870s by the Austrian physicist [[Ludwig Boltzmann]], who showed that the [[thermodynamics|thermodynamic]] properties of a [[gas]] could be derived from the combined properties of its many constituent [[molecule]]s. Boltzmann argued that by averaging the behaviors of all the different molecules in a gas, one can understand macroscopic properties such as volume, temperature, and pressure. In addition, this perspective led him to give a precise definition of entropy as the [[natural logarithm]] of the number of different states of the molecules (also called ''microstates'') that give rise to the same macroscopic features.<ref>[[#Yau|Yau and Nadis]], pp. 187–188</ref> In the twentieth century, physicists began to apply the same concepts to black holes. In most systems such as gases, the entropy scales with the volume. In the 1970s, the physicist [[Jacob Bekenstein]] suggested that the entropy of a black hole is instead proportional to the ''surface area'' of its [[event horizon]], the boundary beyond which matter and radiation may escape its gravitational attraction.<ref name=Bekenstein/> When combined with ideas of the physicist [[Stephen Hawking]],<ref name=Hawking1975/> Bekenstein's work yielded a precise formula for the entropy of a black hole. The [[Bekenstein–Hawking formula]] expresses the entropy {{math|''S''}} as : <math>S= \frac{c^3kA}{4\hbar G}</math> where {{math|''c''}} is the [[speed of light]], {{math|''k''}} is the [[Boltzmann constant]], {{math|''ħ''}} is the [[reduced Planck constant]], {{math|''G''}} is [[Newton's constant]], and {{math|''A''}} is the surface area of the event horizon.<ref>[[#Wald|Wald]], p. 417</ref> Like any physical system, a black hole has an entropy defined in terms of the number of different microstates that lead to the same macroscopic features. The Bekenstein–Hawking entropy formula gives the expected value of the entropy of a black hole, but by the 1990s, physicists still lacked a derivation of this formula by counting microstates in a theory of quantum gravity. Finding such a derivation of this formula was considered an important test of the viability of any theory of quantum gravity such as string theory.<ref>[[#Yau|Yau and Nadis]], p. 189</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)