Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Summation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== General identities === : <math>\sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) \quad</math> ([[distributivity]])<ref name="vpr">{{cite book | last1 = Varberg | first1 = Dale E. | last2 = Purcell | first2 = Edwin J. | last3 = Rigdon | first3 = Steven E. | title = Calculus | year = 2007 | publisher = [[Pearson Prentice Hall]] | edition = 9th | isbn = 978-0131469686 | page = 217 }}</ref> : <math>\sum_{n=s}^t f(n) \pm \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left(f(n) \pm g(n)\right)\quad</math> ([[commutativity]] and [[associativity]])<ref name="vpr"/> : <math>\sum_{n=s}^t f(n) = \sum_{n=s+p}^{t+p} f(n-p)\quad</math> (index shift) : <math>\sum_{n\in B} f(n) = \sum_{m\in A} f(\sigma(m)), \quad</math> for a [[bijection]] {{mvar|Ο}} from a finite set {{mvar|A}} onto a set {{mvar|B}} (index change); this generalizes the preceding formula. : <math>\sum_{n=s}^t f(n) =\sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n)\quad</math> (splitting a sum, using [[associativity]]) : <math>\sum_{n=a}^{b}f(n)=\sum_{n=0}^{b}f(n)-\sum_{n=0}^{a-1}f(n)\quad</math> (a variant of the preceding formula) : <math>\sum_{n=s}^t f(n) = \sum_{n=0}^{t-s} f(t-n)\quad</math> (the sum from the first term up to the last is equal to the sum from the last down to the first) : <math>\sum_{n=0}^t f(n) = \sum_{n=0}^{t} f(t-n)\quad</math> (a particular case of the formula above) : <math>\sum_{i=k_0}^{k_1}\sum_{j=l_0}^{l_1} a_{i,j} = \sum_{j=l_0}^{l_1}\sum_{i=k_0}^{k_1} a_{i,j}\quad</math> (commutativity and associativity, again) : <math>\sum_{k\le j \le i\le n} a_{i,j} = \sum_{i=k}^n\sum_{j=k}^i a_{i,j} = \sum_{j=k}^n\sum_{i=j}^n a_{i,j} = \sum_{j=0}^{n-k}\sum_{i=k}^{n-j} a_{i+j,i}\quad</math> (another application of commutativity and associativity) : <math>\sum_{n=2s}^{2t+1} f(n) = \sum_{n=s}^t f(2n) + \sum_{n=s}^t f(2n+1)\quad</math> (splitting a sum into its [[parity (mathematics)|odd]] and [[parity (mathematics)|even]] parts, for even indexes) : <math>\sum_{n=2s+1}^{2t} f(n) = \sum_{n=s+1}^t f(2n) + \sum_{n=s+1}^t f(2n-1)\quad</math> (splitting a sum into its odd and even parts, for odd indexes) :<math>\biggl(\sum_{i=0}^{n} a_i\biggr) \biggl(\sum_{j=0}^{n} b_j\biggr)=\sum_{i=0}^n \sum_{j=0}^n a_ib_j \quad</math> ([[distributivity]]) : <math>\sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \biggl(\sum_{i=s}^m a_i\biggr) \biggl( \sum_{j=t}^n c_j \biggr)\quad</math> (distributivity allows factorization) : <math>\sum_{n=s}^t \log_b f(n) = \log_b \prod_{n=s}^t f(n)\quad</math> (the [[logarithm]] of a product is the sum of the logarithms of the factors) : <math>C^{\sum\limits_{n=s}^t f(n) } = \prod_{n=s}^t C^{f(n)}\quad</math> (the [[exponentiation|exponential]] of a sum is the product of the exponential of the summands) : <math>\sum^{k}_{m = 0}\sum^{m}_{n = 0}f(m,n)=\sum^{k}_{m = 0}\sum^{k}_{n = m}f(n,m),\quad</math>for any function <math display="inline">f</math> from <math display="inline">\mathbb{Z}\times\mathbb{Z}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)