Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sylow theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Fusion results === [[Frattini's argument]] shows that a Sylow subgroup of a normal subgroup provides a factorization of a finite group. A slight generalization known as '''Burnside's fusion theorem''' states that if ''G'' is a finite group with Sylow ''p''-subgroup ''P'' and two subsets ''A'' and ''B'' normalized by ''P'', then ''A'' and ''B'' are ''G''-conjugate if and only if they are ''N<sub>G</sub>''(''P'')-conjugate. The proof is a simple application of Sylow's theorem: If ''B''=''A<sup>g</sup>'', then the normalizer of ''B'' contains not only ''P'' but also ''P<sup>g</sup>'' (since ''P<sup>g</sup>'' is contained in the normalizer of ''A<sup>g</sup>''). By Sylow's theorem ''P'' and ''P<sup>g</sup>'' are conjugate not only in ''G'', but in the normalizer of ''B''. Hence ''gh''<sup>−1</sup> normalizes ''P'' for some ''h'' that normalizes ''B'', and then ''A''<sup>''gh''<sup>−1</sup></sup> = ''B''<sup>h<sup>−1</sup></sup> = ''B'', so that ''A'' and ''B'' are ''N<sub>G</sub>''(''P'')-conjugate. Burnside's fusion theorem can be used to give a more powerful factorization called a [[semidirect product]]: if ''G'' is a finite group whose Sylow ''p''-subgroup ''P'' is contained in the center of its normalizer, then ''G'' has a normal subgroup ''K'' of order coprime to ''P'', ''G'' = ''PK'' and ''P''∩''K'' = {1}, that is, ''G'' is [[p-nilpotent group|''p''-nilpotent]]. Less trivial applications of the Sylow theorems include the [[focal subgroup theorem]], which studies the control a Sylow ''p''-subgroup of the [[derived subgroup]] has on the structure of the entire group. This control is exploited at several stages of the [[classification of finite simple groups]], and for instance defines the case divisions used in the [[Alperin–Brauer–Gorenstein theorem]] classifying finite [[simple group]]s whose Sylow 2-subgroup is a [[quasi-dihedral group]]. These rely on [[J. L. Alperin]]'s strengthening of the conjugacy portion of Sylow's theorem to control what sorts of elements are used in the conjugation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)