Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Table of divisors
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 901 to 1000 == {| class="wikitable" !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[901 (number)|901]] |1, 17, 53, 901 |4 |972 |71 |deficient, composite |- ![[902 (number)|902]] |1, 2, 11, 22, 41, 82, 451, 902 |8 |1512 |610 |deficient, composite |- ![[903 (number)|903]] |1, 3, 7, 21, 43, 129, 301, 903 |8 |1408 |505 |deficient, composite |- ![[904 (number)|904]] |1, 2, 4, 8, 113, 226, 452, 904 |8 |1710 |806 |deficient, composite |- ![[905 (number)|905]] |1, 5, 181, 905 |4 |1092 |187 |deficient, composite |- ![[906 (number)|906]] |1, 2, 3, 6, 151, 302, 453, 906 |8 |1824 |918 |abundant, composite |- ![[907 (number)|907]] |1, 907 |2 |908 |1 |deficient, prime |- ![[908 (number)|908]] |1, 2, 4, 227, 454, 908 |6 |1596 |688 |deficient, composite |- ![[909 (number)|909]] |1, 3, 9, 101, 303, 909 |6 |1326 |417 |deficient, composite |- ![[910 (number)|910]] |1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910 |16 |2016 |1106 |abundant, composite |- ![[911 (number)|911]] |1, 911 |2 |912 |1 |deficient, prime |- ![[912 (number)|912]] |1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 912 |20 |2480 |1568 |abundant, composite |- ![[913 (number)|913]] |1, 11, 83, 913 |4 |1008 |95 |deficient, composite |- ![[914 (number)|914]] |1, 2, 457, 914 |4 |1374 |460 |deficient, composite |- ![[915 (number)|915]] |1, 3, 5, 15, 61, 183, 305, 915 |8 |1488 |573 |deficient, composite |- ![[916 (number)|916]] |1, 2, 4, 229, 458, 916 |6 |1610 |694 |deficient, composite |- ![[917 (number)|917]] |1, 7, 131, 917 |4 |1056 |139 |deficient, composite |- ![[918 (number)|918]] |1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 918 |16 |2160 |1242 |abundant, composite |- ![[919 (number)|919]] |1, 919 |2 |920 |1 |deficient, prime |- ![[920 (number)|920]] |1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920 |16 |2160 |1240 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[921 (number)|921]] |1, 3, 307, 921 |4 |1232 |311 |deficient, composite |- ![[922 (number)|922]] |1, 2, 461, 922 |4 |1386 |464 |deficient, composite |- ![[923 (number)|923]] |1, 13, 71, 923 |4 |1008 |85 |deficient, composite |- ![[924 (number)|924]] |1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 924 |24 |2688 |1764 |abundant, composite |- ![[925 (number)|925]] |1, 5, 25, 37, 185, 925 |6 |1178 |253 |deficient, composite |- ![[926 (number)|926]] |1, 2, 463, 926 |4 |1392 |466 |deficient, composite |- ![[927 (number)|927]] |1, 3, 9, 103, 309, 927 |6 |1352 |425 |deficient, composite |- ![[928 (number)|928]] |1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928 |12 |1890 |962 |abundant, composite |- ![[929 (number)|929]] |1, 929 |2 |930 |1 |deficient, prime |- ![[930 (number)|930]] |1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 930 |16 |2304 |1374 |abundant, composite |- ![[931 (number)|931]] |1, 7, 19, 49, 133, 931 |6 |1140 |209 |deficient, composite |- ![[932 (number)|932]] |1, 2, 4, 233, 466, 932 |6 |1638 |706 |deficient, composite |- ![[933 (number)|933]] |1, 3, 311, 933 |4 |1248 |315 |deficient, composite |- ![[934 (number)|934]] |1, 2, 467, 934 |4 |1404 |470 |deficient, composite |- ![[935 (number)|935]] |1, 5, 11, 17, 55, 85, 187, 935 |8 |1296 |361 |deficient, composite |- ![[936 (number)|936]] |1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 936 |24 |2730 |1794 |abundant, composite |- ![[937 (number)|937]] |1, 937 |2 |938 |1 |deficient, prime |- ![[938 (number)|938]] |1, 2, 7, 14, 67, 134, 469, 938 |8 |1632 |694 |deficient, composite |- ![[939 (number)|939]] |1, 3, 313, 939 |4 |1256 |317 |deficient, composite |- ![[940 (number)|940]] |1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 940 |12 |2016 |1076 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[941 (number)|941]] |1, 941 |2 |942 |1 |deficient, prime |- ![[942 (number)|942]] |1, 2, 3, 6, 157, 314, 471, 942 |8 |1896 |954 |abundant, composite |- ![[943 (number)|943]] |1, 23, 41, 943 |4 |1008 |65 |deficient, composite |- ![[944 (number)|944]] |1, 2, 4, 8, 16, 59, 118, 236, 472, 944 |10 |1860 |916 |deficient, composite |- ![[945 (number)|945]] |1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945 |16 |1920 |975 |abundant, composite, primitive abundant |- ![[946 (number)|946]] |1, 2, 11, 22, 43, 86, 473, 946 |8 |1584 |638 |deficient, composite |- ![[947 (number)|947]] |1, 947 |2 |948 |1 |deficient, prime |- ![[948 (number)|948]] |1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 948 |12 |2240 |1292 |abundant, composite |- ![[949 (number)|949]] |1, 13, 73, 949 |4 |1036 |87 |deficient, composite |- ![[950 (number)|950]] |1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950 |12 |1860 |910 |deficient, composite |- ![[951 (number)|951]] |1, 3, 317, 951 |4 |1272 |321 |deficient, composite |- ![[952 (number)|952]] |1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 952 |16 |2160 |1208 |abundant, composite |- ![[953 (number)|953]] |1, 953 |2 |954 |1 |deficient, prime |- ![[954 (number)|954]] |1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 954 |12 |2106 |1152 |abundant, composite |- ![[955 (number)|955]] |1, 5, 191, 955 |4 |1152 |197 |deficient, composite |- ![[956 (number)|956]] |1, 2, 4, 239, 478, 956 |6 |1680 |724 |deficient, composite |- ![[957 (number)|957]] |1, 3, 11, 29, 33, 87, 319, 957 |8 |1440 |483 |deficient, composite |- ![[958 (number)|958]] |1, 2, 479, 958 |4 |1440 |482 |deficient, composite |- ![[959 (number)|959]] |1, 7, 137, 959 |4 |1104 |145 |deficient, composite |- ![[960 (number)|960]] |1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 960 |28 |3048 |2088 |abundant, highly abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[961 (number)|961]] |1, 31, 961 |3 |993 |32 |deficient, composite |- ![[962 (number)|962]] |1, 2, 13, 26, 37, 74, 481, 962 |8 |1596 |634 |deficient, composite |- ![[963 (number)|963]] |1, 3, 9, 107, 321, 963 |6 |1404 |441 |deficient, composite |- ![[964 (number)|964]] |1, 2, 4, 241, 482, 964 |6 |1694 |730 |deficient, composite |- ![[965 (number)|965]] |1, 5, 193, 965 |4 |1164 |199 |deficient, composite |- ![[966 (number)|966]] |1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966 |16 |2304 |1338 |abundant, composite |- ![[967 (number)|967]] |1, 967 |2 |968 |1 |deficient, prime |- ![[968 (number)|968]] |1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 968 |12 |1995 |1027 |abundant, composite |- ![[969 (number)|969]] |1, 3, 17, 19, 51, 57, 323, 969 |8 |1440 |471 |deficient, composite |- ![[970 (number)|970]] |1, 2, 5, 10, 97, 194, 485, 970 |8 |1764 |794 |deficient, composite |- ![[971 (number)|971]] |1, 971 |2 |972 |1 |deficient, prime |- ![[972 (number)|972]] |1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 972 |18 |2548 |1576 |abundant, composite |- ![[973 (number)|973]] |1, 7, 139, 973 |4 |1120 |147 |deficient, composite |- ![[974 (number)|974]] |1, 2, 487, 974 |4 |1464 |490 |deficient, composite |- ![[975 (number)|975]] |1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975 |12 |1736 |761 |deficient, composite |- ![[976 (number)|976]] |1, 2, 4, 8, 16, 61, 122, 244, 488, 976 |10 |1922 |946 |deficient, composite |- ![[977 (number)|977]] |1, 977 |2 |978 |1 |deficient, prime |- ![[978 (number)|978]] |1, 2, 3, 6, 163, 326, 489, 978 |8 |1968 |990 |abundant, composite |- ![[979 (number)|979]] |1, 11, 89, 979 |4 |1080 |101 |deficient, composite |- ![[980 (number)|980]] |1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 980 |18 |2394 |1414 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[981 (number)|981]] |1, 3, 9, 109, 327, 981 |6 |1430 |449 |deficient, composite |- ![[982 (number)|982]] |1, 2, 491, 982 |4 |1476 |494 |deficient, composite |- ![[983 (number)|983]] |1, 983 |2 |984 |1 |deficient, prime |- ![[984 (number)|984]] |1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 984 |16 |2520 |1536 |abundant, composite |- ![[985 (number)|985]] |1, 5, 197, 985 |4 |1188 |203 |deficient, composite |- ![[986 (number)|986]] |1, 2, 17, 29, 34, 58, 493, 986 |8 |1620 |634 |deficient, composite |- ![[987 (number)|987]] |1, 3, 7, 21, 47, 141, 329, 987 |8 |1536 |549 |deficient, composite |- ![[988 (number)|988]] |1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988 |12 |1960 |972 |deficient, composite |- ![[989 (number)|989]] |1, 23, 43, 989 |4 |1056 |67 |deficient, composite |- ![[990 (number)|990]] |1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990 |24 |2808 |1818 |abundant, composite |- ![[991 (number)|991]] |1, 991 |2 |992 |1 |deficient, prime |- ![[992 (number)|992]] |1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 992 |12 |2016 |1024 |abundant, composite |- ![[993 (number)|993]] |1, 3, 331, 993 |4 |1328 |335 |deficient, composite |- ![[994 (number)|994]] |1, 2, 7, 14, 71, 142, 497, 994 |8 |1728 |734 |deficient, composite |- ![[995 (number)|995]] |1, 5, 199, 995 |4 |1200 |205 |deficient, composite |- ![[996 (number)|996]] |1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 996 |12 |2352 |1356 |abundant, composite |- ![[997 (number)|997]] |1, 997 |2 |998 |1 |deficient, prime |- ![[998 (number)|998]] |1, 2, 499, 998 |4 |1500 |502 |deficient, composite |- ![[999 (number)|999]] |1, 3, 9, 27, 37, 111, 333, 999 |8 |1520 |521 |deficient, composite |- ![[1000 (number)|1000]] |1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000 |16 |2340 |1340 |abundant, composite |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)