Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Timeline of nuclear fusion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 2020s == * '''2020''' ** Assembly of [[ITER]], which has been under construction for years, commences.<ref>{{Cite news|last=Rincon|first=Paul|date=2020-07-28|title=Largest nuclear fusion project begins assembly|language=en-GB|work=BBC News|url=https://www.bbc.com/news/science-environment-53573294|access-date=2020-08-17}}</ref> ** The Chinese experimental [[nuclear fusion]] reactor [[HL-2M]] is turned on for the first time, achieving its first <!--confirmed -->plasma discharge.<ref>{{cite news |title=China turns on nuclear-powered 'artificial sun' (Update) |url=https://phys.org/news/2020-12-china-nuclear-powered-artificial-sun.html |access-date=15 January 2021 |work=phys.org |language=en}}</ref> ** On November 1, the [[National Ignition Facility]] records '''the first burning plasma achieved in a laboratory'''.'''<ref name=":0">{{Cite journal |last1=Zylstra |first1=A. B. |last2=Hurricane |first2=O. A. |last3=Callahan |first3=D. A.|author3-link=Debra Callahan |last4=Kritcher |first4=A. L. |author-link4=Andrea Lynn Kritcher |last5=Ralph |first5=J. E. |last6=Robey |first6=H. F. |last7=Ross |first7=J. S. |last8=Young |first8=C. V. |last9=Baker |first9=K. L. |last10=Casey |first10=D. T. |last11=Döppner |first11=T. |date=Jan 2022 |title=Burning plasma achieved in inertial fusion |journal=Nature |language=en |volume=601 |issue=7894 |pages=542–548 |bibcode=2022Natur.601..542Z |doi=10.1038/s41586-021-04281-w |issn=1476-4687 |pmc=8791836 |pmid=35082418}}</ref>''' * '''2021''' ** On August 8, the [[National Ignition Facility]] records '''the first experiment to surpass the [[Lawson criterion]]'''.'''<ref>{{Cite journal |last1=Indirect Drive ICF Collaboration |last2=Abu-Shawareb |first2=H. |last3=Acree |first3=R. |last4=Adams |first4=P. |last5=Adams |first5=J. |last6=Addis |first6=B. |last7=Aden |first7=R. |last8=Adrian |first8=P. |last9=Afeyan |first9=B. B. |last10=Aggleton |first10=M. |last11=Aghaian |first11=L. |last12=Aguirre |first12=A. |last13=Aikens |first13=D. |last14=Akre |first14=J. |last15=Albert |first15=F. |date=August 8, 2022 |title=Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.129.075001 |journal=Physical Review Letters |volume=129 |issue=7 |page=075001 |bibcode=2022PhRvL.129g5001A |doi=10.1103/PhysRevLett.129.075001 |pmid=36018710 |s2cid=250321131 |hdl-access=free |hdl=10044/1/99300}}</ref><ref>{{Cite journal |last1=Kritcher |first1=A. L. |author-link=Andrea Lynn Kritcher |last2=Zylstra |first2=A. B. |last3=Callahan |first3=D. A.|author3-link=Debra Callahan |last4=Hurricane |first4=O. A. |last5=Weber |first5=C. R. |last6=Clark |first6=D. S. |last7=Young |first7=C. V. |last8=Ralph |first8=J. E. |last9=Casey |first9=D. T. |last10=Pak |first10=A. |last11=Landen |first11=O. L. |last12=Bachmann |first12=B. |last13=Baker |first13=K. L. |last14=Berzak Hopkins |first14=L. |last15=Bhandarkar |first15=S. D. |date=August 8, 2022 |title=Design of an inertial fusion experiment exceeding the Lawson criterion for ignition |journal=Physical Review E |volume=106 |issue=2 |page=025201 |bibcode=2022PhRvE.106b5201K |doi=10.1103/PhysRevE.106.025201 |pmid=36110025 |s2cid=251457864 |doi-access=free}}</ref><ref>{{Cite journal |last1=Zylstra |first1=A. B. |last2=Kritcher |first2=A. L. |last3=Hurricane |first3=O. A. |last4=Callahan |first4=D. A. |author4-link=Debra Callahan|last5=Ralph |first5=J. E. |last6=Casey |first6=D. T. |last7=Pak |first7=A. |last8=Landen |first8=O. L. |last9=Bachmann |first9=B. |last10=Baker |first10=K. L. |last11=Berzak Hopkins |first11=L. |last12=Bhandarkar |first12=S. D. |last13=Biener |first13=J. |last14=Bionta |first14=R. M. |last15=Birge |first15=N. W. |date=August 8, 2022 |title=Experimental achievement and signatures of ignition at the National Ignition Facility |url=https://link.aps.org/doi/10.1103/PhysRevE.106.025202 |journal=Physical Review E |volume=106 |issue=2 |page=025202 |bibcode=2022PhRvE.106b5202Z |doi=10.1103/PhysRevE.106.025202 |osti=1959535 |pmid=36109932 |s2cid=251451927}}</ref>''' ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> China's [[Experimental Advanced Superconducting Tokamak]] sustains a high-temperature plasma for 101 seconds (120 million °C).<ref>{{cite news |title=Chinese 'Artificial Sun' experimental fusion reactor sets world record for superheated plasma time |url=https://nation.com.pk/29-May-2021/chinese-artificial-sun-experimental-fusion-reactor-sets-world-record-for-superheated-plasma-time |date=May 29, 2021 |work=The Nation|access-date=May 31, 2021 }}</ref> ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> The [[National Ignition Facility]] achieves ''[[Fusion energy gain factor|Q]]'' = 0.70.<ref>{{cite web|date=18 August 2021|title=NIF Experiment Puts Researchers at Threshold of Fusion Ignition |url=https://lasers.llnl.gov/news/nif-experiment-puts-researchers-threshold-fusion-ignition|access-date=28 August 2021|work=National Ignition Facility}}</ref> ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> China's [[Experimental Advanced Superconducting Tokamak]] sustains a high-temperature plasma for 1,056 seconds (70 million °C).<ref>{{Cite web|url=https://www.scmp.com/news/china/science/article/3161780/chinas-artificial-sun-hits-new-high-clean-energy-boost|title = China's 'artificial sun' hits new high in clean energy boost|date = January 2022}}</ref><ref>{{cite news |last1=Yirka |first1=Bob |title=Chinese tokamak facility achieves 120-million-degree C for 1,056 seconds |url=https://phys.org/news/2022-01-chinese-tokamak-facility-million-degree-seconds.html |access-date=19 January 2022 |work=phys.org |language=en}}</ref><ref>{{cite web |title=1,056 Seconds, another world record for EAST |url=http://english.ipp.cas.cn/syxw/202112/t20211231_295485.html |archive-url=https://web.archive.org/web/20220103170927/english.ipp.cas.cn/syxw/202112/t20211231_295485.html |archive-date=2022-01-03 |publisher=Institute Of Plasma Physics Chinese Academy Of Sciences}}</ref> * '''2022''' ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> The [[Joint European Torus]] in Oxford, UK, produces a 59 MJ pulse (5 seconds).<ref>{{Cite web|date=2022-02-09|title=Oxford's JET lab smashes nuclear fusion energy output record |url=https://www.bbc.co.uk/news/science-environment-60312633|access-date=2022-02-09|website=BBC News|language=en}}</ref><ref>{{cite news |title=Nuclear fusion heat record a 'huge step' in quest for new energy source |url=https://www.theguardian.com/environment/2022/feb/09/nuclear-fusion-heat-record-a-huge-step-in-quest-for-new-energy-source |access-date=22 March 2022 |work=The Guardian |date=9 February 2022 |language=en}}</ref> ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> On August 8, the [[National Ignition Facility]] records '''the first laboratory [[Fusion ignition|plasma ignition]]'''. The [[Fusion energy gain factor|energy gain factor]] was ''Q'' = 0.72, the ratio of laser beam input to fusion output.<ref>{{Cite web|date=2022-08-08|title=Three peer-reviewed papers highlight scientific results of National Ignition Facility record yield shot |url=https://www.llnl.gov/news/three-peer-reviewed-papers-highlight-scientific-results-national-ignition-facility-record|access-date=2022-08-11|website=LLNL.GOV|language=en}}</ref><ref>{{Cite web|date=2022-08-12|title=Nuclear Fusion Breakthrough Confirmed: California Team Achieved Ignition |url=https://www.newsweek.com/nuclear-fusion-energy-milestone-ignition-confirmed-california-1733238|access-date=2022-08-11|website=Newsweek|language=en}}</ref> ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> On December 5, the [[National Ignition Facility]] records '''the first experiment to surpass [[scientific breakeven]]''', achieving an [[Fusion energy gain factor|energy gain factor]] of ''Q'' = 1.54, producing more fusion energy than the laser beam delivered to the target. Laser efficiency is on the order of 1%.<ref>{{Cite web|date=2022-12-13|title=Nuclear-Fusion Energy Breakthrough Reported by Scientists at U.S. Lab |url=https://www.wsj.com/articles/nuclear-fusion-energy-breakthrough-reported-by-scientists-at-u-s-lab-11670944595|access-date=2022-12-13|website=[[WSJ]]|language=en}}</ref> * '''2023''' ** <small>[{{tooltip|2=Category for items about milestone achievements|Record}}]</small> On February 15, 2023, [[Wendelstein 7-X]] reached a new milestone: Power plasma with gigajoule energy turnover generated for eight minutes.<ref>{{Cite web|date=2023-02-22|title=Wendelstein 7-X reaches milestone|url=https://www.ipp.mpg.de/5322229/01_23|access-date=2022-02-22|website=Max Planck Institute|language=en}}</ref> ** On February 21, 2023, '''the first proton-boron fusion via magnetic confinement''' is reported at Japan's [[Large Helical Device]]. <ref name="p495">{{cite journal |last=Magee |first=R. M. |last2=Ogawa |first2=K. |last3=Tajima |first3=T. |last4=Allfrey |first4=I. |last5=Gota |first5=H. |last6=McCarroll |first6=P. |last7=Ohdachi |first7=S. |last8=Isobe |first8=M. |last9=Kamio |first9=S. |last10=Klumper |first10=V. |last11=Nuga |first11=H. |last12=Shoji |first12=M. |last13=Ziaei |first13=S. |last14=Binderbauer |first14=M. W. |last15=Osakabe |first15=M. |date=2023-02-21 |title=First measurements of p11B fusion in a magnetically confined plasma |journal=Nature Communications |publisher=Springer Science and Business Media LLC |volume=14 |issue=1 |page= |doi=10.1038/s41467-023-36655-1 |issn=2041-1723 |doi-access=free|pmc=9941502 }}</ref> ** [[JT-60#JT-60SA|JT-60SA]] achieves first plasma in October, making it the largest operational superconducting tokamak in the world.<ref name="first">{{cite web |date=24 October 2023 |title=First plasma 23 October |url=https://www.jt60sa.org/wp/first-plasma-23-october/ |url-status=live |archive-url=https://web.archive.org/web/20231027211642/https://www.jt60sa.org/wp/first-plasma-23-october/ |archive-date=27 October 2023 |access-date=15 November 2023 |website=JT-60SA}}</ref> ** On 18 December, [[Joint European Torus]] pulses its final plasma before decommissioning, after over 40 years of operation. * '''2024''' **In June, the [[HH70]] tokamak, built by the Chinese company Energy Singularity, achieves first plasma. It is '''the first fusion device to exclusively use [[High-temperature superconductivity|high-temperature superconducting]] magnets'''.<ref name="v015">{{cite journal |last=Li |first=Z.Y. |last2=Pan |first2=Z.C. |last3=Zhang |first3=Q.J. |last4=Zhu |first4=K.P. |last5=Zhang |first5=C. |last6=Zhang |first6=Z.W. |last7=Dong |first7=G. |last8=Ye |first8=Y.M. |last9=Yang |first9=Z. |year=2024 |title=Development and construction of magnet system for world’s first full high temperature superconducting tokamak |journal=Superconductivity |publisher=Elsevier BV |volume=12 |page=100137 |doi=10.1016/j.supcon.2024.100137 |issn=2772-8307 |doi-access=free}}</ref> **The [[Korean Superconducting Tokamak Advanced Research]] sustains a high-temperature plasma for 48 seconds (100 million °C).<ref>{{cite journal |last1=Han |first1=H. |last2=Park |first2=S. J. |last3=Sung |first3=C. |last4=Kang |first4=J. |last5=Lee |first5=Y. H. |last6=Chung |first6=J. |last7=Hahm |first7=T. S. |last8=Kim |first8=B. |last9=Park |first9=J.-K. |last10=Bak |first10=J. G. |last11=Cha |first11=M. S. |last12=Choi |first12=G. J. |last13=Choi |first13=M. J. |last14=Gwak |first14=J. |last15=Hahn |first15=S. H. |last16=Jang |first16=J. |last17=Lee |first17=K. C. |last18=Kim |first18=J. H. |last19=Kim |first19=S. K. |last20=Kim |first20=W. C. |last21=Ko |first21=J. |last22=Ko |first22=W. H. |last23=Lee |first23=C. Y. |last24=Lee |first24=J. H. |last25=Lee |first25=J. H. |last26=Lee |first26=J. K. |last27=Lee |first27=J. P. |last28=Lee |first28=K. D. |last29=Park |first29=Y. S. |last30=Seo |first30=J. |last31=Yang |first31=S. M. |last32=Yoon |first32=S. W. |last33=Na |first33=Y.-S. |title=A sustained high-temperature fusion plasma regime facilitated by fast ions |journal=Nature |date=8 September 2022 |volume=609 |issue=7926 |pages=269–275 |doi=10.1038/s41586-022-05008-1}}</ref><ref>{{cite web |url=https://www.kfe.re.kr |date=20 March 2024 |title=핵융합 플라스마 장기간 운전기술 확보 청신호, 보도자료, KSTAR연구본부 |language =ko}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)