Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transcriptome
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Mammals=== The transcriptomes of [[stem cell]]s and [[cancer]] cells are of particular interest to researchers who seek to understand the processes of [[cellular differentiation]] and [[carcinogenesis]]. A pipeline using RNA-seq or gene array data can be used to track genetic changes occurring in [[stem cells|stem]] and [[precursor cells]] and requires at least three independent gene expression data from the former cell type and mature cells.<ref>{{cite journal|title=Assessment of stem cell differentiation based on genome-wide expression profiles|journal=[[Philosophical Transactions of the Royal Society B]]|doi=10.1098/rstb.2017.0221|date=5 July 2018|volume=373|issue=1750|pmid=29786556|first1=Patricio|last1=Godoy|first2=Wolfgang|last2=Schmidt-Heck|first3=Birte|last3=Hellwig|first4=Patrick|last4=Nell|first5=David|last5=Feuerborn|first6=Jörg|last6=Rahnenführer|first7=Kathrin|last7=Kattler|first8=Jörn|last8=Walter|first9=Nils|last9=Blüthgen|first10=Jan|last10=G. Hengstler|pages = 20170221|pmc = 5974444|doi-access=free}}</ref> Analysis of the transcriptomes of human [[oocyte]]s and [[human embryo|embryos]] is used to understand the molecular mechanisms and signaling pathways controlling early embryonic development, and could theoretically be a powerful tool in making proper [[embryo selection]] in [[in vitro fertilisation]].{{citation needed|date=April 2020}} Analyses of the transcriptome content of the placenta in the first-trimester of pregnancy in ''in vitro'' fertilization and embryo transfer (IVT-ET) revealed differences in genetic expression which are associated with higher frequency of adverse perinatal outcomes. Such insight can be used to optimize the practice.<ref>{{cite journal|title=The placental transcriptome of the first-trimester placenta is affected by in vitro fertilization and embryo transfer|journal=Reproductive Biology and Endocrinology|last1=Zhao|first1=L|last2=Zheng|first2=X|last3=Liu|first3=J|last4=Zheng|first4=R|last5=Yang|first5=R|last6=Wang|first6=Y|last7=Sun|first7=L|doi=10.1186/s12958-019-0494-7|pmid=31262321|date=1 July 2019|volume=17|issue=1|page=50|pmc = 6604150|doi-access=free}}</ref> Transcriptome analyses can also be used to optimize cryopreservation of oocytes, by lowering injuries associated with the process.<ref>{{cite journal|title=Probing lasting cryoinjuries to oocyte-embryo transcriptome|journal=PLOS ONE|first1=Binnur|last1=Eroglu|first2=Edyta|last2=A. Szurek|first3=Peter|last3=Schall|first4=Keith|last4=E. Latham|first5=Ali|last5=Eroglu|date=6 April 2020|doi=10.1371/journal.pone.0231108|pmid=32251418|volume=15|issue=4|pages = e0231108|pmc = 7135251|bibcode=2020PLoSO..1531108E|doi-access=free}}</ref> Transcriptomics is an emerging and continually growing field in [[biomarker]] discovery for use in assessing the safety of drugs or chemical [[risk assessment]].<ref name="David T Szabo">{{cite book|last=Szabo|first=David|title=Transcriptomic biomarkers in safety and risk assessment of chemicals. In Ramesh Gupta, editors:Gupta - Biomarkers in Toxicology, Oxford:Academic Press.|date=2014|isbn=978-0-12-404630-6|pages=1033–1038|doi=10.1016/B978-0-12-404630-6.00062-2|chapter=Transcriptomic biomarkers in safety and risk assessment of chemicals|s2cid=89396307 |url=https://zenodo.org/record/1258664}}</ref> Transcriptomes may also be used to [[Phylogenetic inference using transcriptomic data|infer phylogenetic relationships]] among individuals or to detect evolutionary patterns of transcriptome conservation.<ref>{{Cite journal|last1=Drost|first1=Hajk-Georg|last2=Gabel|first2=Alexander|last3=Grosse|first3=Ivo|last4=Quint|first4=Marcel|last5=Grosse|first5=Ivo|date=2018-05-01|title=myTAI: evolutionary transcriptomics with R|url= |journal=Bioinformatics|language=en|volume=34|issue=9|pages=1589–1590|doi=10.1093/molbev/msv012|issn=0737-4038|pmc=5925770|pmid=29309527}}</ref> Transcriptome analyses were used to discover the incidence of antisense transcription, their role in gene expression through interaction with surrounding genes and their abundance in different chromosomes.<ref>{{cite journal|url=https://www.science.org/doi/full/10.1126/science.1112009|title=Antisense Transcription in the Mammalian Transcriptome|first1=Katayama|display-authors=etal|last1=S|journal=[[Science (journal)|Science]]|volume=309|issue=5740|year=2005|pages=1564–6|doi=10.1126/science.1112009|pmid=16141073|bibcode=2005Sci...309.1564R|s2cid=34559885|url-access=subscription}}</ref> RNA-seq was also used to show how RNA isoforms, transcripts stemming from the same gene but with different structures, can produce complex phenotypes from limited genomes.<ref name="scimag">{{cite journal|url=https://www.science.org/content/article/transcriptomics-today-microarrays-rna-seq-and-more|title=Transcriptomics today: Microarrays, RNA-seq, and more|journal=Science Magazine|first=Chris|last=Tachibana|date=31 July 2015|volume=349|issue=6247|pages=544|bibcode=2015Sci...349..544T|access-date=2 May 2020}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)