Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transformation problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Marx's reasoning === The following two tables adapt the deer-beaver-arrow example seen above (which, of course, is not found in Marx, and is only a useful simplification) to illustrate Marx's approach. In both cases it is assumed that the total quantities of beavers and deer captured are <math>Q_B</math> and <math>Q_D</math> respectively. It is also supposed that the subsistence real wage is one beaver per unit of labour, so that the amount of labour embodied in it is <math>l_W = E_B = l_A a_B + l_B < 1</math>. Table 1 shows how the total amount of surplus value of the system, shown in the last row, is determined. {| border="2" cellpadding="4" cellspacing="0" style="vertical-align:center;text-align:center; border: 1px #aaa solid; border-collapse: collapse;" |+'''''Table 1—Composition of Marxian values in the deer-beaver-arrow production model''''' |- ! Sector ! Total Constant Capital <br/> <math>Q_i c_i</math> ! Total Variable Capital <br/> <math>Q_i v_i</math> ! Total Surplus Value <br/><math> \sigma Q_i v_i</math> ! Unit Value <br/><math>c_i + (1 + \sigma) v_i</math> |- ! Beavers | <math>Q_B l_A a_B</math> | <math>Q_B(l_A a_B + l_B) l_B</math> | <math>\sigma Q_B (l_A a_B + l_B) l_B </math> | <math>l_A a_B + (1 + \sigma) (l_A a_B + l_B) l_B</math> |- ! Deer | <math>Q_D l_A a_D</math> | <math> Q_D (l_A a_B + l_B) l_D </math> | <math> \sigma Q_D (l_A a_B + l_B) l_D </math> | <math> l_A a_D + (1 + \sigma) (l_A a_B + l_B) l_D </math> |- ! Total | | | <math> \sigma (l_A a_B + l_B) (Q_B l_B + Q_D l_D) </math> | |} Table 2 illustrates how Marx thought this total would be redistributed between the two industries, as "profit" at a uniform return rate, ''r'', over constant capital. First, the condition that total "profit" must equal total surplus value—in the final row of table 2—is used to determine ''r''. The result is then multiplied by the value of the constant capital of each industry to get its "profit". Finally, each (absolute) competitive price in labour units is obtained, as the sum of constant capital, variable capital, and "profit" per unit of output, in the last column of table 2. {| border="2" cellpadding="4" cellspacing="0" style="vertical-align:center;text-align:center; border: 1px #aaa solid; border-collapse: collapse;" |+'''''Table 2—Marx's transformation formulas in the deer-beaver-arrow production model''''' |- ! Sector ! Total Constant Capital <br/> <math>Q_i c_i</math> ! Total Variable Capital <br/> <math>Q_i v_i</math> ! Redistributed Total <br/>Surplus Value <br/> <math> rQ_i c_i</math> ! Resulting <br/> Competitive <br/>Price <br/> <math> v_i + (1 + r) c_i</math> |- ! Beavers | <math> Q_B l_A a_B </math> | <math> Q_B (l_A a_B + l_B) l_B </math> | <math> rQ_B l_A a_B </math> | <math> (l_A a_B + l_B) l_B + (1 + r) l_A a_B </math> |- ! Deer | <math> Q_D l_A a_D</math> | <math> Q_D (l_A a_B + l_B) l_D </math> | <math> rQ_D l_A a_D </math> | <math> (l_A a_B + l_B) l_D + (1 + r) l_A a_D </math> |- ! Total | | |<math>r l_A(Q_B a_B + Q_D a_D) = \sigma (l_A a_B + l_B) (Q_B l_B + Q_D l_D)</math> | |} Tables 1 and 2 parallel the tables in which Marx elaborated his numerical example.<ref>[http://www.marxists.org/archive/marx/works/1894-c3/ch09.htm Capital, III Chapter 9]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)