Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unsupervised learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Approaches === Some of the most common algorithms used in unsupervised learning include: (1) Clustering, (2) Anomaly detection, (3) Approaches for learning latent variable models. Each approach uses several methods as follows: * [[Data clustering|Clustering]] methods include: [[hierarchical clustering]],<ref name="Hastie" /> [[k-means]],<ref name="tds-kmeans" /> [[mixture models]], [[model-based clustering]], [[DBSCAN]], and [[OPTICS algorithm]] * [[Anomaly detection]] methods include: [[Local Outlier Factor]], and [[Isolation Forest]] * Approaches for learning [[latent variable model]]s such as [[Expectation–maximization algorithm]] (EM), [[Method of moments (statistics)|Method of moments]], and [[Blind signal separation]] techniques ([[Principal component analysis]], [[Independent component analysis]], [[Non-negative matrix factorization]], [[Singular value decomposition]])
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)