Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation to elliptic curves == {{see also|Elliptic curve#Elliptic curves over the complex numbers}} Consider the embedding of the cubic curve in the [[complex projective plane]] :<math>\bar C_{g_2,g_3}^\mathbb{C} = \{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\}\cup\{O\}\subset \mathbb{C}^{2} \cup \mathbb{P}_1(\mathbb{C}) = \mathbb{P}_2(\mathbb{C}).</math> where <math>O</math> is a point lying on the [[line at infinity]] <math>\mathbb{P}_1(\mathbb{C})</math>. For this cubic there exists no rational parameterization, if <math>\Delta \neq 0</math>.<ref name=":5">{{citation|surname1=Hulek, Klaus.|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 8|isbn=978-3-8348-2348-9|date=2012|language=German}}</ref> In this case it is also called an elliptic curve. Nevertheless there is a parameterization in [[homogeneous coordinates]] that uses the <math>\wp</math>-function and its derivative <math>\wp'</math>:<ref>{{citation|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|date=2012|at=p. 12|edition=2., überarb. u. erw. Aufl. 2012|publication-place=Wiesbaden|publisher=Vieweg+Teubner Verlag|language=German|isbn=978-3-8348-2348-9|surname1=Hulek, Klaus.}}</ref> :<math> \varphi(\wp,\wp'): \mathbb{C}/\Lambda\to\bar C_{g_2,g_3}^\mathbb{C}, \quad z \mapsto \begin{cases} \left[\wp(z):\wp'(z):1\right] & z \notin \Lambda \\ \left[0:1:0\right] \quad & z \in \Lambda \end{cases} </math> Now the map <math>\varphi</math> is [[Bijection|bijective]] and parameterizes the elliptic curve <math>\bar C_{g_2,g_3}^\mathbb{C}</math>. <math>\mathbb{C}/\Lambda </math> is an [[abelian group]] and a [[topological space]], equipped with the [[quotient topology]]. It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair <math>g_2,g_3\in\mathbb{C}</math> with <math>\Delta = g_2^3 - 27g_3^2 \neq 0 </math> there exists a lattice <math>\mathbb{Z}\omega_1+\mathbb{Z}\omega_2</math>, such that <math>g_2=g_2(\omega_1,\omega_2) </math> and <math>g_3=g_3(\omega_1,\omega_2) </math>.<ref>{{citation|surname1=Hulek, Klaus.| title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen| edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 111| isbn=978-3-8348-2348-9| date=2012|language=German}}</ref> The statement that elliptic curves over <math>\mathbb{Q}</math> can be parameterized over <math>\mathbb{Q}</math>, is known as the [[modularity theorem]]. This is an important theorem in [[number theory]]. It was part of [[Andrew Wiles|Andrew Wiles']] proof (1995) of [[Fermat's Last Theorem]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)