Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weighted arithmetic mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Variance of the weighted sum (''pwr''-estimator for totals) ==== If the population size ''N'' is known we can estimate the population mean using <math>\hat{\bar Y}_{\text{known } N} = \frac{\hat Y_{pwr}}{N} \approx \frac{\sum_{i=1}^n w_i y'_i}{N} </math>. If the [[sampling design]] is one that results in a fixed sample size ''n'' (such as in [[Probability-proportional-to-size sampling|pps sampling]]), then the variance of this estimator is: : <math> \operatorname{Var} \left( \hat{\bar Y}_{\text{known }N} \right) = \frac{1}{N^2} \frac{n}{n-1} \sum_{i=1}^n \left( w_i y_i - \overline{wy} \right)^2 </math> {{math proof|proof= The general formula can be developed like this: : <math>\hat{\bar Y}_{\text{known } N} = \frac{\hat Y_{pwr}}{N} = \frac{\frac{1}{n} \sum_{i=1}^n \frac{y'_i}{p_i} }{N} \approx \frac{\sum_{i=1}^n \frac{y'_i}{\pi_i}}{N} = \frac{\sum_{i=1}^n w_i y'_i}{N}. </math> The population total is denoted as <math>Y = \sum_{i=1}^N y_i</math> and it may be estimated by the (unbiased) [[Horvitz–Thompson estimator]], also called the ''<math>\pi</math>''-estimator. This estimator can be itself estimated using the ''pwr''-estimator (i.e.: <math>p</math>-expanded with replacement estimator, or "probability with replacement" estimator). With the above notation, it is: <math>\hat Y_{pwr} = \frac{1}{n} \sum_{i=1}^n \frac{y'_i}{p_i} = \sum_{i=1}^n \frac{y'_i}{n p_i} \approx \sum_{i=1}^n \frac{y'_i}{\pi_i} = \sum_{i=1}^n w_i y'_i</math>.<ref name = "sarndal1992" />{{rp|51}} The estimated variance of the ''pwr''-estimator is given by:<ref name = "sarndal1992" />{{rp|52}} <math display="block">\operatorname{Var}(\hat Y_{pwr}) = \frac{n}{n-1} \sum_{i=1}^n \left( w_i y_i - \overline{wy} \right)^2 </math> where <math>\overline{wy} = \sum_{i=1}^n \frac{w_i y_i}{n} </math>. The above formula was taken from Sarndal et al. (1992) (also presented in Cochran 1977), but was written differently.<ref name = "sarndal1992" />{{rp|52}}<ref name = "Cochran1977" />{{rp|307 (11.35)}} The left side is how the variance was written and the right side is how we've developed the weighted version: <math display="block">\begin{align} \operatorname{Var}(\hat Y_\text{pwr}) & = \frac{1}{n} \frac{1}{n-1} \sum_{i=1}^n \left( \frac{y_i}{p_i} - \hat Y_{pwr} \right)^2 \\ & = \frac{1}{n} \frac{1}{n-1} \sum_{i=1}^n \left( \frac{n}{n} \frac{y_i}{p_i} - \frac{n}{n} \sum_{i=1}^n w_i y_i \right)^2 = \frac{1}{n} \frac{1}{n-1} \sum_{i=1}^n \left( n \frac{y_i}{\pi_i} - n \frac{\sum_{i=1}^n w_i y_i}{n} \right)^2 \\ & = \frac{n^2}{n} \frac{1}{n-1} \sum_{i=1}^n \left( w_i y_i - \overline{wy} \right)^2 \\ & = \frac{n}{n-1} \sum_{i=1}^n \left( w_i y_i - \overline{wy} \right)^2 \end{align}</math> And we got to the formula from above. }} An alternative term, for when the sampling has a random sample size (as in [[Poisson sampling]]), is presented in Sarndal et al. (1992) as:<ref name = "sarndal1992" />{{rp|182}} <math display="block">\operatorname{Var}(\hat \bar Y_{\text{pwr (known }N\text{)}}) = \frac{1}{N^2} \sum_{i=1}^n \sum_{j=1}^n \left( \check{\Delta}_{ij} \check{y}_i \check{y}_j \right) </math> With <math>\check{y}_i = \frac{y_i}{\pi_i}</math>. Also, <math>C(I_i, I_j) = \pi_{ij} - \pi_{i}\pi_{j} = \Delta_{ij} </math> where <math>\pi_{ij}</math> is the probability of selecting both i and j.<ref name = "sarndal1992" />{{rp|36}} And <math>\check{\Delta}_{ij} = 1 - \frac{\pi_{i}\pi_{j}}{\pi_{ij}}</math>, and for i=j: <math>\check{\Delta}_{ii} = 1 - \frac{\pi_{i}\pi_{i}}{\pi_{i}} = 1- \pi_{i}</math>.<ref name = "sarndal1992" />{{rp|43}} If the selection probability are uncorrelated (i.e.: <math>\forall i \neq j: C(I_i, I_j) = 0</math>), and when assuming the probability of each element is very small, then: : <math>\operatorname{Var}(\hat \bar Y_{\text{pwr (known }N\text{)}}) = \frac{1}{N^2} \sum_{i=1}^n \left( w_i y_i \right)^2 </math> {{math proof|proof= We assume that <math>(1- \pi_i) \approx 1</math> and that <math display="block">\begin{align} \operatorname{Var}(\hat Y_{\text{pwr (known } N\text{)}}) & = \frac{1}{N^2} \sum_{i=1}^n \sum_{j=1}^n \left( \check{\Delta}_{ij} \check{y}_i \check{y}_j \right) \\ & = \frac{1}{N^2} \sum_{i=1}^n \left( \check{\Delta}_{ii} \check{y}_i \check{y}_i \right) \\ & = \frac{1}{N^2} \sum_{i=1}^n \left( (1- \pi_i) \frac{y_i}{\pi_i} \frac{y_i}{\pi_i} \right) \\ & = \frac{1}{N^2} \sum_{i=1}^n \left( w_i y_i \right)^2 \end{align}</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)