Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wing loading
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Flaps=== Like all aircraft flaps, Fowler [[Flap (aeronautics)#Types|flaps]] increase the [[camber (aerodynamics)|camber]] and hence the maximum value of lift coefficient (''C''<sub>Lmax</sub>) lowering the landing speed. They also increase wing area, decreasing the wing loading, which further lowers the landing speed.<ref>Anderson 1999, pp. 30–1</ref> {{or-section|date=April 2023}} High lift devices such as certain flaps allow the option of smaller wings to be used in a design in order to achieve similar landing speeds compared to an alternate design using a larger wing without a high lift device. Such options allow for higher wing loading in a design. This may result in beneficial features, such as higher cruise speeds or a reduction in bumpiness at high speed low altitude flight (the latter feature is very important for close air support aircraft roles). For instance, Lockheed's [[Lockheed F-104 Starfighter|Starfighter]] uses internal [[Blown flap | Blown flaps]] to achieve a high wing loading design (723 kg/m²) which allows it a much smoother low altitude flight at full throttle speeds compared to low wing loading delta designs such as the Mirage 2000 or Mirage III (387 kg/m²). The F-16 which has a relatively high wing loading of 689 kg/m² uses [[Leading-edge extension|leading-edge extensions]] to increase wing lift at high angles of attack.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)