Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adjugate matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cayley–Hamilton formula === {{main|Cayley–Hamilton theorem}} Let {{math|''p''<sub>'''A'''</sub>(''t'')}} be the characteristic polynomial of {{math|'''A'''}}. The [[Cayley–Hamilton theorem]] states that :<math>p_{\mathbf{A}}(\mathbf{A}) = \mathbf{0}.</math> Separating the constant term and multiplying the equation by {{math|adj('''A''')}} gives an expression for the adjugate that depends only on {{math|'''A'''}} and the coefficients of {{math|''p''<sub>'''A'''</sub>(''t'')}}. These coefficients can be explicitly represented in terms of [[trace (linear algebra)|traces]] of powers of {{math|'''A'''}} using complete exponential [[Bell polynomials]]. The resulting formula is :<math>\operatorname{adj}(\mathbf{A}) = \sum_{s=0}^{n-1} \mathbf{A}^{s} \sum_{k_1, k_2, \ldots, k_{n-1}} \prod_{\ell=1}^{n-1} \frac{(-1)^{k_\ell+1}}{\ell^{k_\ell}k_{\ell}!}\operatorname{tr}(\mathbf{A}^\ell)^{k_\ell},</math> where {{mvar|n}} is the dimension of {{math|'''A'''}}, and the sum is taken over {{mvar|s}} and all sequences of {{math|''k<sub>l</sub>'' ≥ 0}} satisfying the linear [[Diophantine equation]] :<math>s+\sum_{\ell=1}^{n-1}\ell k_\ell = n - 1.</math> For the 2 × 2 case, this gives :<math>\operatorname{adj}(\mathbf{A})=\mathbf{I}_2(\operatorname{tr}\mathbf{A}) - \mathbf{A}.</math> For the 3 × 3 case, this gives :<math>\operatorname{adj}(\mathbf{A})=\frac{1}{2}\mathbf{I}_3\!\left( (\operatorname{tr}\mathbf{A})^2-\operatorname{tr}\mathbf{A}^2\right) - \mathbf{A}(\operatorname{tr}\mathbf{A}) + \mathbf{A}^2 .</math> For the 4 × 4 case, this gives :<math>\operatorname{adj}(\mathbf{A})= \frac{1}{6}\mathbf{I}_4\!\left( (\operatorname{tr}\mathbf{A})^3 - 3\operatorname{tr}\mathbf{A}\operatorname{tr}\mathbf{A}^2 + 2\operatorname{tr}\mathbf{A}^{3} \right) - \frac{1}{2}\mathbf{A}\!\left( (\operatorname{tr}\mathbf{A})^2 - \operatorname{tr}\mathbf{A}^2\right) + \mathbf{A}^2(\operatorname{tr}\mathbf{A}) - \mathbf{A}^3.</math> The same formula follows directly from the terminating step of the [[Faddeev–LeVerrier algorithm]], which efficiently determines the [[characteristic polynomial]] of {{math|'''A'''}}. In general, adjugate matrix of arbitrary dimension N matrix can be computed by Einstein's convention. :<math>(\operatorname{adj}(\mathbf{A}))_{i_N}^{j_N} = \frac{1}{(N-1)!} \epsilon_{i_1 i_2 \ldots i_N} \epsilon^{j_1 j_2 \ldots j_N} A_{j_1}^{i_1} A_{j_2}^{i_2} \ldots A_{j_{N-1}}^{i_{N-1}} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)