Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Agent-based model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== In epidemiology === Agent-based models now complement traditional [[Compartmental models in epidemiology|compartmental]] models, the usual type of epidemiological models. ABMs have been shown to be superior to compartmental models in regard to the accuracy of predictions.<ref>{{Cite journal|last1=Eisinger|first1=Dirk|last2=Thulke|first2=Hans-Hermann|date=2008-04-01|title=Spatial pattern formation facilitates eradication of infectious diseases|journal=The Journal of Applied Ecology|volume=45|issue=2|pages=415β423|doi=10.1111/j.1365-2664.2007.01439.x|issn=0021-8901|pmc=2326892|pmid=18784795|bibcode=2008JApEc..45..415E }}</ref><ref>{{Cite book|url=https://press.princeton.edu/books/hardcover/9780691190822/agent-based-and-individual-based-modeling|title=Agent-Based and Individual-Based Modeling|date=2019-03-26|isbn=978-0-691-19082-2|language=en|last1=Railsback|first1=Steven F.|last2=Grimm|first2=Volker|publisher=Princeton University Press |access-date=October 19, 2020|archive-date=October 24, 2020|archive-url=https://web.archive.org/web/20201024163738/https://press.princeton.edu/books/hardcover/9780691190822/agent-based-and-individual-based-modeling|url-status=live}}</ref> Recently, ABMs such as [[CovidSim]] by epidemiologist [[Neil Ferguson (epidemiologist)|Neil Ferguson]], have been used to inform public health (nonpharmaceutical) interventions against the spread of [[Severe acute respiratory syndrome coronavirus 2|SARS-CoV-2]].<ref>{{Cite journal|last=Adam|first=David|date=2020-04-02|title=Special report: The simulations driving the world's response to COVID-19|journal=Nature|language=en|volume=580|issue=7803|pages=316β318|doi=10.1038/d41586-020-01003-6|pmid=32242115|bibcode=2020Natur.580..316A|s2cid=214771531|doi-access=}}</ref> Epidemiological ABMs have been criticized for simplifying and unrealistic assumptions.<ref>{{Cite journal|last1=Sridhar|first1=Devi|last2=Majumder|first2=Maimuna S.|date=2020-04-21|title=Modelling the pandemic|url=https://www.bmj.com/content/369/bmj.m1567|journal=BMJ|language=en|volume=369|pages=m1567|doi=10.1136/bmj.m1567|issn=1756-1833|pmid=32317328|s2cid=216074714|doi-access=free|access-date=October 19, 2020|archive-date=May 16, 2021|archive-url=https://web.archive.org/web/20210516061544/https://www.bmj.com/content/369/bmj.m1567|url-status=live|url-access=subscription}}</ref><ref>{{Cite journal|last1=Squazzoni|first1=Flaminio|last2=Polhill|first2=J. Gareth|last3=Edmonds|first3=Bruce|last4=Ahrweiler|first4=Petra|last5=Antosz|first5=Patrycja|last6=Scholz|first6=Geeske|last7=Chappin|first7=Γmile|last8=Borit|first8=Melania|last9=Verhagen|first9=Harko|last10=Giardini|first10=Francesca|last11=Gilbert|first11=Nigel|date=2020|title=Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action|url=http://jasss.soc.surrey.ac.uk/23/2/10.html|journal=Journal of Artificial Societies and Social Simulation|volume=23|issue=2|pages=10|doi=10.18564/jasss.4298|s2cid=216426533|issn=1460-7425|doi-access=free|access-date=October 19, 2020|archive-date=February 24, 2021|archive-url=https://web.archive.org/web/20210224024334/http://jasss.soc.surrey.ac.uk/23/2/10.html|url-status=live|hdl=10037/19057|hdl-access=free}}</ref> Still, they can be useful in informing decisions regarding mitigation and suppression measures in cases when ABMs are accurately calibrated.<ref>{{Cite journal|last1=Maziarz|first1=Mariusz|last2=Zach|first2=Martin|date=2020|title=Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: A methodological appraisal|url= |journal=Journal of Evaluation in Clinical Practice|language=en|volume=26|issue=5|pages=1352β1360|doi=10.1111/jep.13459|issn=1365-2753|pmc=7461315|pmid=32820573}}</ref> The ABMs for such simulations are mostly based on [[synthetic population]]s, since the data of the actual population is not always available.<ref>{{cite journal |last1=Manout |first1=O. |last2=Ciari |first2=F. |title=Assessing the Role of Daily Activities and Mobility in the Spread of COVID-19 in Montreal With an Agent-Based Approach |journal=Frontiers in Built Environment |date=2021 |volume=7 |doi=10.3389/fbuil.2021.654279 |url=https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1346397 |language=en|doi-access=free }}</ref> {| class="wikitable" |+ Examples of ABM use in epidemiology |- ! Program !! Year !! Citation !! Description |- | Covasim || 2021 ||<ref>{{Citation |last1=Kerr |first1=Cliff |last2=Stuart |first2=Robyn |display-authors=1 |year=2021 |title=Covasim: an agent-based model of COVID-19 dynamics and interventions |work=medRxiv |volume=17 |issue=7 |pages=e1009149 |doi=10.1371/journal.pcbi.1009149 |doi-access=free |pmid=34310589 |pmc=8341708 |bibcode=2021PLSCB..17E9149K }}</ref> || SEIR model implemented in Python with an emphasis on features for studying the effects of interventions. |- | OpenABM-Covid19 || 2021 ||<ref>{{Citation |last1=Hinch |first1=Robert |last2=Probert |first2=William |display-authors=1 |year=2021 |title=OpenABM-Covid19βAn agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing |journal=PLOS Computational Biology |volume=17 |issue=7 |pages=e1009146 |doi=10.1371/journal.pcbi.1009146 |pmid=34252083 |pmc=8328312 |bibcode=2021PLSCB..17E9146H |doi-access=free }}</ref> || Epidemic model of the spread of COVID-19, simulating every individual in a population with both R and Python interfaces but using C for heavy computation. |- | OpenCOVID || 2021 ||<ref>{{Citation |last1=Shattock |first1=Andrew |last2=Le Rutte |first2=Epke |last3=Duenner |first3=Robert |display-authors=2 |year=2021 |title=Impact of vaccination and non-pharmaceutical interventions on SARS-CoV-2 dynamics in Switzerland |journal=Epidemics |volume=38 |issue=7 |pages=100535 |doi=10.1016/j.epidem.2021.100535 |pmid=34923396 |pmc=8669952 |bibcode=2021PLSCB..17E9146H }}</ref><ref>{{cite web |url=https://github.com/SwissTPH/OpenCOVID |title=Git-repository with open access source-code for OpenCOVID. |author=<!--Not stated--> |date=2022-01-31 |website=GitHub |publisher=Swiss TPH |access-date=2022-02-15 |archive-date=February 15, 2022 |archive-url=https://web.archive.org/web/20220215120617/https://github.com/SwissTPH/OpenCOVID |url-status=live }}</ref> || An individual-based transmission model of SARS-CoV-2 infection and COVID-19 disease dynamics, developed at the [[Swiss Tropical and Public Health Institute]]. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)