Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebraic stack
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Structure sheaf == The structure sheaf of an algebraic stack is an object pulled back from a universal structure sheaf <math>\mathcal{O}</math> on the site <math>(Sch/S)_{fppf}</math>.<ref>{{Cite web|title=Section 94.3 (06TI): Presheaves—The Stacks project|url=https://stacks.math.columbia.edu/tag/06TI|access-date=2020-10-01|website=stacks.math.columbia.edu}}</ref> This '''universal structure sheaf'''<ref>{{Cite web|title=Section 94.6 (06TU): The structure sheaf—The Stacks project|url=https://stacks.math.columbia.edu/tag/06TU|access-date=2020-10-01|website=stacks.math.columbia.edu}}</ref> is defined as<blockquote><math>\mathcal{O}:(Sch/S)_{fppf}^{op} \to Rings, \text{ where } U/X \mapsto \Gamma(U,\mathcal{O}_U)</math></blockquote>and the associated structure sheaf on a category fibered in groupoids<blockquote><math>p:\mathcal{X} \to (Sch/S)_{fppf}</math></blockquote>is defined as<blockquote><math>\mathcal{O}_\mathcal{X} := p^{-1}\mathcal{O}</math></blockquote>where <math>p^{-1}</math> comes from the map of Grothendieck topologies. In particular, this means is <math>x \in \text{Ob}(\mathcal{X})</math> lies over <math>U</math>, so <math>p(x) = U</math>, then <math>\mathcal{O}_\mathcal{X}(x)=\Gamma(U,\mathcal{O}_U)</math>. As a sanity check, it's worth comparing this to a category fibered in groupoids coming from an <math>S</math>-scheme <math>X</math> for various topologies.<ref>{{Cite web|title=Section 94.8 (076N): Representable categories—The Stacks project|url=https://stacks.math.columbia.edu/tag/076N|access-date=2020-10-01|website=stacks.math.columbia.edu}}</ref> For example, if <blockquote><math>(\mathcal{X}_{Zar},\mathcal{O}_\mathcal{X}) = ((Sch/X)_{Zar}, \mathcal{O}_X)</math></blockquote>is a category fibered in groupoids over <math>(Sch/S)_{fppf}</math>, the structure sheaf for an open subscheme <math>U \to X</math> gives<blockquote><math>\mathcal{O}_\mathcal{X}(U) = \mathcal{O}_X(U) = \Gamma(U,\mathcal{O}_X)</math></blockquote>so this definition recovers the classic structure sheaf on a scheme. Moreover, for a [[quotient stack]] <math>\mathcal{X} = [X/G]</math>, the structure sheaf this just gives the <math>G</math>-invariant sections<blockquote><math>\mathcal{O}_{\mathcal{X}}(U) = \Gamma(U,u^*\mathcal{O}_X)^{G}</math></blockquote>for <math>u:U\to X</math> in <math>(Sch/S)_{fppf}</math>.<ref>{{Cite web|title=Lemma 94.13.2 (076S)—The Stacks project|url=https://stacks.math.columbia.edu/tag/076S|access-date=2020-10-01|website=stacks.math.columbia.edu}}</ref><ref>{{Cite web|title=Section 76.12 (0440): Quasi-coherent sheaves on groupoids—The Stacks project|url=https://stacks.math.columbia.edu/tag/0440|access-date=2020-10-01|website=stacks.math.columbia.edu}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)