Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autonomous system (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Finite durations === For non-linear autonomous ODEs it is possible under some conditions to develop solutions of finite duration,<ref>{{cite book |author = Vardia T. Haimo |title = 1985 24th IEEE Conference on Decision and Control |chapter = Finite Time Differential Equations |year = 1985 |pages = 1729β1733 |doi = 10.1109/CDC.1985.268832 |s2cid = 45426376 |chapter-url=https://ieeexplore.ieee.org/document/4048613}}</ref> meaning here that from its own dynamics, the system will reach the value zero at an ending time and stay there in zero forever after. These finite-duration solutions cannot be [[analytical function]]s on the whole real line, and because they will be non-[[Lipschitz function]]s at the ending time, they don't stand{{clarification needed|date=October 2024}} uniqueness of solutions of Lipschitz differential equations. As example, the equation: :<math>y'= -\text{sgn}(y)\sqrt{|y|},\,\,y(0)=1</math> Admits the finite duration solution: :<math>y(x)=\frac{1}{4}\left(1-\frac{x}{2}+\left|1-\frac{x}{2}\right|\right)^2</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)