Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Axion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Direct conversion in a magnetic field === Several experiments search for astrophysical axions by the [[Primakoff effect]], which converts axions to photons and vice versa in electromagnetic fields. The [[Axion Dark Matter Experiment]] (ADMX) at the [[University of Washington]] is a [[haloscope]] that uses a strong magnetic field to detect the possible weak conversion of axions to [[microwave]]s.<ref>{{cite press release |last1=Chu |first1=Jennifer |title=Team simulates a magnetar to seek dark matter particle |url=https://phys.org/news/2016-10-team-simulates-magnetar-dark-particle.html |work=Phys.org |publisher=Massachusetts Institute of Technology }}</ref> ADMX searches the galactic [[dark matter halo]]<ref> {{cite journal |last1=Duffy |first1=L. D. |last2=Sikivie |first2=P. |last3=Tanner |first3=D. B. |last4=Bradley |first4=R. F. |last5=Hagmann |first5=C. |last6=Kinion |first6=D. |last7=Rosenberg |first7=L. J. |last8=van Bibber |first8=K. |last9=Yu |first9=D. B. |last10=Bradley |first10=R. F. |display-authors=6 |year=2006 |title=High resolution search for dark-matter axions |journal=Physical Review D |volume=74 |issue=1 |page=12006 |arxiv=astro-ph/0603108 |doi=10.1103/PhysRevD.74.012006 |bibcode=2006PhRvD..74a2006D |s2cid=35236485 }} </ref> for axions resonant with a cold microwave cavity. ADMX has excluded optimistic axion models in the range {{val|1.9|–|3.53|u=μeV}}.<ref> {{cite journal |last1=Asztalos |first1=S. J. |last2=Carosi |first2=G. |last3=Hagmann |first3=C. |last4=Kinion |first4=D. |last5=van Bibber |first5=K. |last6=Hoskins |first6=J. |last7=Hwang |first7=J. |last8=Sikivie |first8=P. |last9=Tanner |first9=D. B. |last10=Hwang |first10=J. |last11=Sikivie |first11=P. |last12=Tanner |first12=D. B. |last13=Bradley |first13=R. |last14=Clarke |first14=J. |display-authors=6 |year=2010 |title=SQUID-based microwave cavity search for dark-matter axions |url=https://digital.library.unt.edu/ark:/67531/metadc1012348/m2/1/high_res_d/986065.pdf |journal=Physical Review Letters |volume=104 |issue=4 |page=41301 |arxiv=0910.5914 |bibcode=2010PhRvL.104d1301A |doi=10.1103/PhysRevLett.104.041301 |pmid=20366699 |s2cid=35365606}} </ref><ref> {{cite web |title=ADMX {{pipe}} Axion Dark Matter eXperiment |url=http://www.phys.washington.edu/groups/admx/home.html |access-date=2014-05-10 |website=phys.washington.edu |publisher=University of Washington |place=Seattle, Washington |department=Physics |df=dmy-all}} </ref><ref> {{cite web |date=2006-03-04 |title=Phase 1 results |url=http://www.phys.washington.edu/groups/admx/results.html |website=phys.washington.edu |publisher=University of Washington |place=Seattle, Washington |df=dmy-all |department=Physics}}</ref> From 2013 to 2018 a series of upgrades<ref>{{cite tech report | doi=10.2172/1508642 | title=The "Gen 2" Axion Dark Matter Experiment (ADMX) | year=2019 | last1=Tanner | first1=David B. | last2=Sullivan | first2=Neil | osti=1508642 | s2cid=204183272 }}</ref> were done and it is taking new data, including at {{val|4.9|–|6.2|u=μeV}}. In December 2021 it excluded the range {{val|3.3|–|4.2|u=μeV}} for the KSVZ model.<ref>{{cite journal |display-authors=6 |last1=Bartram |first1=C. |last2=Braine |first2=T. |last3=Burns |first3=E. |last4=Cervantes |first4=R. |last5=Crisosto |first5=N. |last6=Du |first6=N. |last7=Korandla |first7=H. |last8=Leum |first8=G. |last9=Mohapatra |first9=P. |last10=Nitta |first10=T. |last11=Rosenberg |first11=L. J |last12=Rybka |first12=G. |last13=Yang |first13=J. |last14=Clarke |first14=John |last15=Siddiqi |first15=I. |last16=Agrawal |first16=A. |last17=Dixit |first17=A. V. |last18=Awida |first18=M. H. |last19=Chou |first19=A. S. |last20=Hollister |first20=M. |last21=Knirck |first21=S. |last22=Sonnenschein |first22=A. |last23=Wester |first23=W. |last24=Gleason |first24=J. R. |last25=Hipp |first25=A. T. |last26=Jois |first26=S. |last27=Sikivie |first27=P. |last28=Sullivan |first28=N. S. |last29=Tanner |first29=D. B. |last30=Lentz |first30=E. |last31=Khatiwada |first31=R. |last32=Carosi |first32=G. |last33=Robertson |first33=N. |last34=Woollett |first34=N. |last35=Duffy |first35=L. D. |last36=Boutan |first36=C. |last37=Jones |first37=M. |last38=LaRoque |first38=B. H. |last39=Oblath |first39=N. S. |last40=Taubman |first40=M. S. |last41=Daw |first41=E. J. |last42=Perry |first42=M. G. |last43=Buckley |first43=J. H. |last44=Gaikwad |first44=C. |last45=Hoffman |first45=J. |last46=Murch |first46=K. W. |last47=Goryachev |first47=M. |last48=McAllister |first48=B. T. |last49=Quiskamp |first49=A. |last50=Thomson |first50=C. |last51=Tobar |first51=M. E. |title=Search for Invisible Axion Dark Matter in the 3.3 – 4.2 μ eV Mass Range |journal=Physical Review Letters |date=23 December 2021 |volume=127 |issue=26 |page=261803 |doi=10.1103/PhysRevLett.127.261803 |pmid=35029490 |bibcode=2021PhRvL.127z1803B |s2cid=238634307 |doi-access=free|arxiv=2110.06096 }}</ref><ref>{{cite journal |last1=Stephens |first1=Marric |title=Tightening the Net on Two Kinds of Dark Matter |journal=Physics |date=23 December 2021 |volume=14 |doi=10.1103/Physics.14.s164 |bibcode=2021PhyOJ..14.s164S |s2cid=247277808 |doi-access=free}}</ref> Other experiments of this type include DMRadio,<ref>{{cite journal |last1=Silva-Feaver |first1=Maximiliano |last2=Chaudhuri |first2=Saptarshi |last3=Cho |first3=Hsaio-Mei |last4=Dawson |first4=Carl |last5=Graham |first5=Peter |last6=Irwin |first6=Kent |last7=Kuenstner |first7=Stephen |last8=Li |first8=Dale |last9=Mardon |first9=Jeremy |last10=Moseley |first10=Harvey |last11=Mule |first11=Richard |last12=Phipps |first12=Arran |last13=Rajendran |first13=Surjeet |last14=Steffen |first14=Zach |last15=Young |first15=Betty |title=Design Overview of DM Radio Pathfinder Experiment |journal=IEEE Transactions on Applied Superconductivity |date=June 2017 |volume=27 |issue=4 |pages=1–4 |doi=10.1109/TASC.2016.2631425 |arxiv=1610.09344 |bibcode=2017ITAS...2731425S |s2cid=29416513 }}</ref> HAYSTAC,<ref name=HAYSTAC>{{cite journal |display-authors=6 |last1=Brubaker |first1=B. M. |last2=Zhong |first2=L. |last3=Gurevich |first3=Y. V. |last4=Cahn |first4=S. B. |last5=Lamoreaux |first5=S. K. |last6=Simanovskaia |first6=M. |last7=Root |first7=J. R. |last8=Lewis |first8=S. M. |last9=Al Kenany |first9=S. |last10=Backes |first10=K. M. |last11=Urdinaran |first11=I. |last12=Rapidis |first12=N. M. |last13=Shokair |first13=T. M. |last14=van Bibber |first14=K. A. |last15=Palken |first15=D. A. |last16=Malnou |first16=M. |last17=Kindel |first17=W. F. |last18=Anil |first18=M. A. |last19=Lehnert |first19=K. W. |last20=Carosi |first20=G. |title=First Results from a Microwave Cavity Axion Search at 24 μ eV |journal=Physical Review Letters |date=9 February 2017 |volume=118 |issue=6 |page=061302 |doi=10.1103/physrevlett.118.061302 |s2cid=6509874 |pmid=28234529 |arxiv=1610.02580 |bibcode=2017PhRvL.118f1302B }} </ref> CULTASK,<ref name=CULTASK>{{cite journal |last1=Petrakou |first1=Eleni |title=Haloscope searches for dark matter axions at the Center for Axion and Precision Physics Research |journal=EPJ Web of Conferences |date=2017 |volume=164 |page=01012 |doi=10.1051/epjconf/201716401012 |s2cid=119381143 |arxiv=1702.03664 |bibcode=2017EPJWC.16401012P |url=https://inspirehep.net/record/1513138 }} </ref> and ORGAN.<ref name=ORGAN>{{cite journal |last1=McAllister |first1=Ben T. |last2=Flower |first2=Graeme |last3=Ivanov |first3=Eugene N. |last4=Goryachev |first4=Maxim |last5=Bourhill |first5=Jeremy |last6=Tobar |first6=Michael E. |title=The ORGAN experiment: An axion haloscope above 15 GHz |journal=Physics of the Dark Universe |date=December 2017 |volume=18 |pages=67–72 |doi=10.1016/j.dark.2017.09.010 |bibcode=2017PDU....18...67M |arxiv=1706.00209 |s2cid=118887710 }} </ref> HAYSTAC completed the first scanning run of a haloscope above 20 μeV in the late 2010s.<ref name=HAYSTAC/> Another type of direct conversion experiments are the [[Helioscope|helioscopes]] were the magnet is pointed at the Sun. Axions produced in the Sun would have an energy range of 1-10 keV and can therefore be converted into X-rays of the same energy in the magnet. The current state-of-the-art experiment is the [[CERN Axion Solar Telescope|CERN Axion Solar Telescope (CAST)]] which reached the axion-photon coupling limit of <math>5.8 \times 10^{-11} \ GeV^{-1}</math> at 95% CL (for <math>m_a</math> ≲ 0.02 eV) in 2024.<ref>{{Cite journal |last=CAST Collaboration |last2=Altenmüller |first2=K. |last3=Anastassopoulos |first3=V. |last4=Arguedas-Cuendis |first4=S. |last5=Aune |first5=S. |last6=Baier |first6=J. |last7=Barth |first7=K. |last8=Bräuninger |first8=H. |last9=Cantatore |first9=G. |last10=Caspers |first10=F. |last11=Castel |first11=J. F. |last12=Çetin |first12=S. A. |last13=Christensen |first13=F. |last14=Cogollos |first14=C. |last15=Dafni |first15=T. |date=2024-11-27 |title=New Upper Limit on the Axion-Photon Coupling with an Extended CAST Run with a Xe-Based Micromegas Detector |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.221005 |journal=Physical Review Letters |volume=133 |issue=22 |pages=221005 |doi=10.1103/PhysRevLett.133.221005}}</ref> The next generation helioscope is the [[International Axion Observatory|International AXion Observatory (IAXO)]] which is currently in development.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)