Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications of the Bernoulli numbers == === Asymptotic analysis === Arguably the most important application of the Bernoulli numbers in mathematics is their use in the [[Euler–Maclaurin formula]]. Assuming that {{mvar|f}} is a sufficiently often differentiable function the Euler–Maclaurin formula can be written as{{sfnp|Graham|Knuth|Patashnik|1989|loc=9.67}} : <math>\sum_{k=a}^{b-1} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^-_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_-(f,m).</math> This formulation assumes the convention {{math|1=''B''{{su|p=−|b=1}} = −{{sfrac|1|2}}}}. Using the convention {{math|1=''B''{{su|p=+|b=1}} = +{{sfrac|1|2}}}} the formula becomes : <math>\sum_{k=a+1}^{b} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^+_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_+(f,m).</math> Here <math>f^{(0)}=f</math> (i.e. the zeroth-order derivative of <math>f</math> is just <math>f</math>). Moreover, let <math>f^{(-1)}</math> denote an [[antiderivative]] of <math>f</math>. By the [[fundamental theorem of calculus]], : <math>\int_a^b f(x)\,dx = f^{(-1)}(b) - f^{(-1)}(a).</math> Thus the last formula can be further simplified to the following succinct form of the Euler–Maclaurin formula : <math> \sum_{k=a+1}^{b} f(k)= \sum_{k=0}^m \frac{B_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m). </math> This form is for example the source for the important Euler–Maclaurin expansion of the zeta function : <math> \begin{align} \zeta(s) & =\sum_{k=0}^m \frac{B^+_k}{k!} s^{\overline{k-1}} + R(s,m) \\ & = \frac{B_0}{0!}s^{\overline{-1}} + \frac{B^+_1}{1!} s^{\overline{0}} + \frac{B_2}{2!} s^{\overline{1}} +\cdots+R(s,m) \\ & = \frac{1}{s-1} + \frac{1}{2} + \frac{1}{12}s + \cdots + R(s,m). \end{align} </math> Here {{math|''s''<sup>{{overline|''k''}}</sup>}} denotes the [[Pochhammer symbol|rising factorial power]].{{sfnp|Graham|Knuth|Patashnik|1989|loc=2.44, 2.52}} Bernoulli numbers are also frequently used in other kinds of [[asymptotic expansion]]s. The following example is the classical Poincaré-type asymptotic expansion of the [[digamma function]] {{math|''ψ''}}. :<math>\psi(z) \sim \ln z - \sum_{k=1}^\infty \frac{B^+_k}{k z^k} </math> === Sum of powers === {{main|Faulhaber's formula}} Bernoulli numbers feature prominently in the [[Closed-form expression|closed form]] expression of the sum of the {{math|''m''}}th powers of the first {{math|''n''}} positive integers. For {{math|''m'', ''n'' ≥ 0}} define :<math>S_m(n) = \sum_{k=1}^n k^m = 1^m + 2^m + \cdots + n^m. </math> This expression can always be rewritten as a [[polynomial]] in {{math|''n''}} of degree {{math|''m'' + 1}}. The [[coefficient]]s of these polynomials are related to the Bernoulli numbers by '''Bernoulli's formula''': : <math>S_m(n) = \frac{1}{m + 1} \sum_{k=0}^m \binom{m + 1}{k} B^+_k n^{m + 1 - k} = m! \sum_{k=0}^m \frac{B^+_k n^{m + 1 - k}}{k! (m+1-k)!} ,</math> where {{math|<big><big>(</big></big>{{su|p=''m'' + 1|b=''k''|a=c}}<big><big>)</big></big>}} denotes the [[binomial coefficient]]. For example, taking {{math|''m''}} to be 1 gives the [[triangular number]]s {{math|0, 1, 3, 6, ...}} {{OEIS2C|id=A000217}}. :<math> 1 + 2 + \cdots + n = \frac{1}{2} (B_0 n^2 + 2 B^+_1 n^1) = \tfrac12 (n^2 + n).</math> Taking {{math|''m''}} to be 2 gives the [[square pyramidal number]]s {{math|0, 1, 5, 14, ...}} {{OEIS2C|id=A000330}}. : <math>1^2 + 2^2 + \cdots + n^2 = \frac{1}{3} (B_0 n^3 + 3 B^+_1 n^2 + 3 B_2 n^1) = \tfrac13 \left(n^3 + \tfrac32 n^2 + \tfrac12 n\right).</math> Some authors use the alternate convention for Bernoulli numbers and state Bernoulli's formula in this way: : <math>S_m(n) = \frac{1}{m + 1} \sum_{k=0}^m (-1)^k \binom{m + 1}{k} B^{-{}}_k n^{m + 1 - k}.</math> Bernoulli's formula is sometimes called [[Faulhaber's formula]] after [[Johann Faulhaber]] who also found remarkable ways to calculate [[sums of powers]]. Faulhaber's formula was generalized by V. Guo and J. Zeng to a [[q-analog|{{mvar|q}}-analog]].{{r|GuoZeng2005}} ===Taylor series=== The Bernoulli numbers appear in the [[Taylor series]] expansion of many [[trigonometric functions]] and [[hyperbolic function]]s. <math display="block">\begin{align} \tan x &= \hphantom{{1\over x}} \sum_{n=1}^\infty \frac{(-1)^{n-1} 2^{2n} (2^{2n}-1) B_{2n} }{(2n)!}\; x^{2n-1}, && \left|x \right| < \frac \pi 2. \\ \cot x &= {1\over x} \sum_{n=0}^\infty \frac{(-1)^n B_{2n} (2x)^{2n}}{(2n)!}, & 0 < & |x| < \pi. \\ \tanh x &= \hphantom{{1\over x}} \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}\;x^{2n-1}, && |x| < \frac \pi 2. \\ \coth x &= {1\over x} \sum_{n=0}^\infty \frac{B_{2n} (2x)^{2n}}{(2n)!}, & 0 < & |x| < \pi. \end{align}</math> ===Laurent series=== The Bernoulli numbers appear in the following [[Laurent series]]:{{sfnp|Arfken|1970|p=463}} [[Digamma function]]: <math> \psi(z)= \ln z- \sum_{k=1}^\infty \frac {B_k^{+{}}} {k z^k} </math> === Use in topology === The [[Kervaire–Milnor formula]] for the order of the cyclic group of diffeomorphism classes of [[exotic sphere|exotic {{math|(4''n'' − 1)}}-spheres]] which bound [[parallelizable manifold]]s involves Bernoulli numbers. Let {{math|''ES''<sub>''n''</sub>}} be the number of such exotic spheres for {{Math|''n'' ≥ 2}}, then :<math>\textit{ES}_n = (2^{2n-2}-2^{4n-3}) \operatorname{Numerator}\left(\frac{B_{4n}}{4n} \right) .</math> The [[Hirzebruch signature theorem#L genus and the Hirzebruch signature theorem|Hirzebruch signature theorem]] for the [[Hirzebruch signature theorem#L genus and the Hirzebruch signature theorem|{{mvar|L}} genus]] of a [[Smooth manifold|smooth]] [[Orientability|oriented]] [[closed manifold]] of [[dimension]] 4''n'' also involves Bernoulli numbers.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)