Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bloch's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Velocity and effective mass == If we apply the time-independent [[Schrödinger equation]] to the Bloch wave function we obtain <math display="block">\hat{H}_\mathbf{k} u_\mathbf{k}(\mathbf{r}) = \left[ \frac{\hbar^2}{2m} \left( -i \nabla + \mathbf{k} \right)^2 + U(\mathbf{r}) \right] u_\mathbf{k}(\mathbf{r}) = \varepsilon_\mathbf{k} u_\mathbf{k}(\mathbf{r}) </math> with boundary conditions <math display="block">u_\mathbf{k}(\mathbf{r}) = u_\mathbf{k}(\mathbf{r} + \mathbf{R})</math> Given this is defined in a finite volume we expect an infinite family of eigenvalues; here <math>{\mathbf{k}}</math> is a parameter of the Hamiltonian and therefore we arrive at a "continuous family" of eigenvalues <math>\varepsilon_n(\mathbf{k})</math> dependent on the continuous parameter <math>{\mathbf{k}}</math> and thus at the basic concept of an electronic band structure. {{math proof | title = Proof<ref name=":1">{{Harvnb|Ashcroft|Mermin|1976|p=140}}</ref> | proof = <math display="block"> E_\mathbf{k} \left(e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x})\right) = \left[\frac{- \hbar^2}{2m} \nabla^2 + U(\mathbf{x} ) \right] \left(e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x})\right) </math> We remain with <math display="block">\begin{align} E_\mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) &= \frac{- \hbar^2}{2m} \nabla \cdot \left( i \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) + e^{i \mathbf{k} \cdot \mathbf{x} } \nabla u_\mathbf{k}(\mathbf{x}) \right) + U(\mathbf{x}) e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) \\[1.2ex] E_\mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) &= \frac{- \hbar^2}{2m} \left( i \mathbf{k} \cdot \left( i \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) + e^{i \mathbf{k} \cdot \mathbf{x} } \nabla u_\mathbf{k}(\mathbf{x}) \right) + i \mathbf{k} \cdot e^{i \mathbf{k} \cdot \mathbf{x} } \nabla u_\mathbf{k}(\mathbf{x}) + e^{i \mathbf{k} \cdot \mathbf{x} } \nabla^2 u_\mathbf{k}(\mathbf{x}) \right) + U(\mathbf{x}) e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) \\[1.2ex] E_\mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) &= \frac{ \hbar^2}{2m} \left(\mathbf{k}^2 e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) - 2i \mathbf{k} \cdot e^{i \mathbf{k} \cdot \mathbf{x} } \nabla u_\mathbf{k}(\mathbf{x}) - e^{i \mathbf{k} \cdot \mathbf{x} } \nabla^2 u_\mathbf{k}(\mathbf{x}) \right) + U(\mathbf{x}) e^{i \mathbf{k} \cdot \mathbf{x} } u_\mathbf{k}(\mathbf{x}) \\[1.2ex] E_\mathbf{k} u_\mathbf{k}(\mathbf{x}) &= \frac{ \hbar^2}{2m} \left(-i \nabla + \mathbf{k}\right)^2 u_\mathbf{k}(\mathbf{x}) + U(\mathbf{x}) u_\mathbf{k}(\mathbf{x}) \end{align}</math> }} This shows how the effective momentum can be seen as composed of two parts, <math display="block">\hat{\mathbf{p}}_\text{eff} = -i \hbar \nabla + \hbar \mathbf{k} ,</math> a standard momentum <math>-i \hbar \nabla</math> and a crystal momentum <math>\hbar \mathbf{k}</math>. More precisely the crystal momentum is not a momentum but it stands for the momentum in the same way as the electromagnetic momentum in the [[minimal coupling]], and as part of a [[canonical transformation]] of the momentum. For the effective velocity we can derive {{Equation box 1 |indent=: |title='''mean velocity of a Bloch electron''' |equation=<math>\frac{\partial \varepsilon_n}{\partial \mathbf{k}} = \frac {\hbar^2}{m} \int d\mathbf{r}\, \psi^{*}_{n\mathbf{k}} (-i \nabla)\psi_{n\mathbf{k}} = \frac {\hbar}{m}\langle\hat{\mathbf{p}}\rangle = \hbar \langle\hat{\mathbf{v}}\rangle</math> |cellpadding |border |border colour = rgb(80,200,120) |background colour = rgb(80,200,120,10%)}} {{math proof | title = Proof<ref name=":2">{{Harvnb|Ashcroft|Mermin|1976|p=765 Appendix E}}</ref> | proof = We evaluate the derivatives <math>\frac{\partial \varepsilon_n}{\partial \mathbf{k}}</math> and <math>\frac{\partial^2 \varepsilon_n(\mathbf{k})}{\partial k_i \partial k_j}</math> given they are the coefficients of the following expansion in {{math|'''q'''}} where {{math|'''q'''}} is considered small with respect to {{math|'''k'''}} <math display="block"> \varepsilon_n(\mathbf{k} + \mathbf{q}) = \varepsilon_n(\mathbf{k}) + \sum_i \frac{\partial \varepsilon_n}{\partial k_i} q_i + \frac{1}{2} \sum_{ij} \frac{\partial^2 \varepsilon_n}{\partial k_i \partial k_j} q_i q_j + O(q^3) </math> Given <math>\varepsilon_n(\mathbf{k}+\mathbf{q})</math> are eigenvalues of <math>\hat{H}_{\mathbf{k}+\mathbf{q}}</math> We can consider the following perturbation problem in q: <math display="block"> \hat{H}_{\mathbf{k}+\mathbf{q}} = \hat{H}_\mathbf{k} + \frac{\hbar^2}{m} \mathbf{q} \cdot ( -i\nabla + \mathbf{k} ) + \frac{\hbar^2}{2m} q^2 </math> Perturbation theory of the second order states that <math display="block"> E_n =E^0_n + \int d\mathbf{r}\, \psi^{*}_n \hat{V} \psi_n + \sum_{n' \neq n} \frac{|\int d\mathbf{r} \,\psi^{*}_n \hat{V} \psi_n|^2}{E^0_n - E^0_{n'}} + ... </math> To compute to linear order in {{math|'''q'''}} <math display="block"> \sum_i \frac{\partial \varepsilon_n}{\partial k_i} q_i = \sum_i \int d\mathbf{r}\, u_{n\mathbf{k}}^{*} \frac{\hbar^2}{m} ( -i\nabla + \mathbf{k} )_i q_i u_{n\mathbf{k}} </math> where the integrations are over a primitive cell or the entire crystal, given if the integral <math display="block">\int d\mathbf{r}\, u_{n\mathbf{k}}^{*} u_{n\mathbf{k}}</math> is normalized across the cell or the crystal. We can simplify over {{math|'''q'''}} to obtain <math display="block"> \frac{\partial \varepsilon_n}{\partial \mathbf{k}} = \frac{\hbar^2}{m} \int d\mathbf{r} \, u_{n\mathbf{k}}^{*}( -i\nabla + \mathbf{k} ) u_{n\mathbf{k}} </math> and we can reinsert the complete wave functions <math display="block"> \frac{\partial \varepsilon_n}{\partial \mathbf{k}} = \frac{\hbar^2}{m} \int d\mathbf{r} \, \psi_{n\mathbf{k}}^{*}( -i\nabla) \psi_{n\mathbf{k}} </math> }} For the [[Effective mass (solid-state physics)|effective mass]] {{Equation box 1 |indent=: |title='''effective mass theorem''' |equation=<math> \frac{\partial^2 \varepsilon_n(\mathbf{k})}{\partial k_i \partial k_j} = \frac {\hbar^2}{m} \delta_{ij} + \left( \frac {\hbar^2}{m} \right)^2 \sum_{n' \neq n} \frac{ \langle n\mathbf{k} | -i \nabla_i | n'\mathbf{k} \rangle \langle n'\mathbf{k} | -i \nabla_j | n\mathbf{k} \rangle + \langle n\mathbf{k} | -i \nabla_j | n'\mathbf{k} \rangle \langle n'\mathbf{k} | -i \nabla_i | n\mathbf{k} \rangle }{ \varepsilon_n(\mathbf{k}) - \varepsilon_{n'}(\mathbf{k}) } </math> |cellpadding |border |border colour = rgb(80,200,120) |background colour = rgb(80,200,120,10%)}} {{math proof | title = Proof<ref name=":2"/> | proof = The second order term <math display="block"> \frac{1}{2} \sum_{ij} \frac{\partial^2 \varepsilon_n}{\partial k_i \partial k_j} q_i q_j = \frac {\hbar^2}{2m} q^2 + \sum_{n' \neq n} \frac{| \int d\mathbf{r} \, u_{n\mathbf{k}}^{*} \frac{\hbar^2}{m} \mathbf{q} \cdot (-i\nabla + \mathbf{k}) u_{n'\mathbf{k}} |^2} {\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}}} </math> Again with <math> \psi_{n\mathbf{k}} =| n\mathbf{k}\rangle = e^{i\mathbf{k}\mathbf{x}} u_{n\mathbf{k}}</math> <math display="block"> \frac{1}{2} \sum_{ij} \frac{\partial^2 \varepsilon_n}{\partial k_i \partial k_j} q_i q_j = \frac {\hbar^2}{2m} q^2 + \sum_{n' \neq n} \frac{| \langle n\mathbf{k} | \frac{\hbar^2}{m} \mathbf{q} \cdot (-i\nabla) | n'\mathbf{k}\rangle |^2} {\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}}} </math> Eliminating <math>q_i</math> and <math>q_j</math> we have the theorem <math display="block"> \frac{\partial^2 \varepsilon_n(\mathbf{k})}{\partial k_i \partial k_j} = \frac {\hbar^2}{m} \delta_{ij} + \left( \frac {\hbar^2}{m} \right)^2 \sum_{n' \neq n} \frac{ \langle n\mathbf{k} | -i \nabla_i | n'\mathbf{k} \rangle \langle n'\mathbf{k} | -i \nabla_j | n\mathbf{k} \rangle + \langle n\mathbf{k} | -i \nabla_j | n'\mathbf{k} \rangle \langle n'\mathbf{k} | -i \nabla_i | n\mathbf{k} \rangle }{ \varepsilon_n(\mathbf{k}) - \varepsilon_{n'}(\mathbf{k}) } </math> }} The quantity on the right multiplied by a factor<math>\frac{1}{\hbar^2}</math> is called effective mass tensor <math>\mathbf{M}(\mathbf{k})</math><ref name=":5">{{Harvnb|Ashcroft|Mermin|1976|p=228}}</ref> and we can use it to write a semi-classical equation for a [[charge carrier]] in a band<ref name=":6">{{Harvnb|Ashcroft|Mermin|1976|p=229}}</ref> {{Equation box 1 |indent=: |title='''Second order semi-classical equation of motion for a [[charge carrier]] in a band''' |equation=<math> \mathbf{M}(\mathbf{k}) \mathbf{a} = \mp e \left(\mathbf {E} + \mathbf{v}(\mathbf{k}) \times \mathbf{B}\right) </math> |cellpadding |border |border colour = rgb(80,200,120) |background colour = rgb(80,200,120,10%)}} where <math>\mathbf{a}</math> is an [[acceleration]]. This equation is analogous to the [[Matter wave|de Broglie wave]] type of approximation<ref name=":7">{{Harvnb|Ashcroft|Mermin|1976|p=227}}</ref> {{Equation box 1 |indent=: |title='''First order semi-classical equation of motion for electron in a band''' |equation=<math> \hbar \dot{k} = - e \left(\mathbf {E} + \mathbf{v} \times \mathbf{B}\right) </math> |cellpadding |border |border colour = rgb(80,200,120) |background colour = rgb(80,200,120,10%)}} As an intuitive interpretation, both of the previous two equations resemble formally and are in a semi-classical analogy with [[Newton's laws of motion#Newton's second law|Newton's second law]] for an electron in an external [[Lorentz force]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)