Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Significance === While many of the ideas of calculus had been developed earlier in [[Greek mathematics|Greece]], [[Chinese mathematics|China]], [[Indian mathematics|India]], [[Islamic mathematics|Iraq, Persia]], and [[Japanese mathematics|Japan]], the use of calculus began in Europe, during the 17th century, when Newton and Leibniz built on the work of earlier mathematicians to introduce its basic principles.<ref name=":0">{{Cite book|title=Chinese studies in the history and philosophy of science and technology|date=1996 |publisher=Kluwer Academic Publishers|author1=Dainian Fan|author2=R. S. Cohen|isbn=0-7923-3463-9|location=Dordrecht|oclc=32272485}}</ref><ref name=":1">{{Cite book|title=Landmark writings in Western mathematics 1640β1940|date=2005 |publisher=Elsevier|editor-first1=I.|editor-last1=Grattan-Guinness|editor-link1=Ivor Grattan-Guinness |isbn=0-444-50871-6 |location=Amsterdam |oclc=60416766}}</ref><ref>{{Cite book|last=Kline |first=Morris|author-link=Morris Kline|title=Mathematical thought from ancient to modern times |volume=3|date=1990 |publisher=Oxford University Press|isbn=978-0-19-977048-9 |location=New York|oclc=726764443}}</ref> The Hungarian polymath [[John von Neumann]] wrote of this work, {{blockquote|The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.<ref>{{cite book|last=von Neumann |first=J. |author-link=John von Neumann |chapter=The Mathematician |editor-last=Heywood |editor-first=R. B. |title=The Works of the Mind |publisher=University of Chicago Press |year=1947 |pages=180β196}} Reprinted in {{cite book|editor-last1=BrΓ³dy |editor-first1=F. |editor-last2=VΓ‘mos |editor-first2=T. |title=The Neumann Compendium |publisher=World Scientific Publishing Co. Pte. Ltd. |year=1995 |isbn=981-02-2201-7 |pages=618β626}}</ref>}} Applications of differential calculus include computations involving [[velocity]] and [[acceleration]], the [[slope]] of a curve, and [[Mathematical optimization|optimization]].<ref name=":5" />{{Rp|pages=341β453}} Applications of integral calculus include computations involving area, [[volume]], [[arc length]], [[center of mass]], [[work (physics)|work]], and [[pressure]].<ref name=":5" />{{Rp|pages=685β700}} More advanced applications include [[power series]] and [[Fourier series]]. Calculus is also used to gain a more precise understanding of the nature of space, time, and motion. For centuries, mathematicians and philosophers wrestled with paradoxes involving [[division by zero]] or sums of infinitely many numbers. These questions arise in the study of [[Motion (physics)|motion]] and area. The [[ancient Greek]] philosopher [[Zeno of Elea]] gave several famous examples of such [[Zeno's paradoxes|paradoxes]]. Calculus provides tools, especially the [[Limit (mathematics)|limit]] and the [[infinite series]], that resolve the paradoxes.<ref>{{cite book|first=Eugenia |last=Cheng |author-link=Eugenia Cheng |title=Beyond Infinity: An Expedition to the Outer Limits of Mathematics |title-link=Beyond Infinity (mathematics book) |pages=206β210 |publisher=Basic Books |year=2017 |isbn=978-1-541-64413-7 |oclc=1003309980}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)