Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central limit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of classical CLT=== The central limit theorem has a proof using [[characteristic function (probability theory)|characteristic functions]].<ref>{{cite book|url=https://jhupbooks.press.jhu.edu/content/introduction-stochastic-processes-physics|title=An Introduction to Stochastic Processes in Physics|publisher=Johns Hopkins University Press|year=2003 |doi=10.56021/9780801868665 |access-date=2016-08-11 |last1=Lemons |first1=Don |isbn=9780801876387 }}</ref> It is similar to the proof of the (weak) [[Proof of the law of large numbers|law of large numbers]]. Assume <math display="inline">\{X_1, \ldots, X_n, \ldots \}</math> are independent and identically distributed random variables, each with mean <math display="inline">\mu</math> and finite variance {{nowrap|<math display="inline">\sigma^2</math>.}} The sum <math display="inline">X_1 + \cdots + X_n</math> has [[Linearity of expectation|mean]] <math display="inline">n\mu</math> and [[Variance#Sum of uncorrelated variables (Bienaymé formula)|variance]] {{nowrap|<math display="inline">n\sigma^2</math>.}} Consider the random variable <math display="block">Z_n = \frac{X_1+\cdots+X_n - n \mu}{\sqrt{n \sigma^2}} = \sum_{i=1}^n \frac{X_i - \mu}{\sqrt{n \sigma^2}} = \sum_{i=1}^n \frac{1}{\sqrt{n}} Y_i,</math> where in the last step we defined the new random variables {{nowrap|<math display="inline">Y_i = \frac{X_i - \mu}{\sigma} </math>,}} each with zero mean and unit variance {{nowrap|(<math display="inline">\operatorname{var}(Y) = 1</math>).}} The [[Characteristic function (probability theory)|characteristic function]] of <math display="inline">Z_n</math> is given by <math display="block">\varphi_{Z_n}\!(t) = \varphi_{\sum_{i=1}^n {\frac{1}{\sqrt{n}}Y_i}}\!(t) \ =\ \varphi_{Y_1}\!\!\left(\frac{t}{\sqrt{n}}\right) \varphi_{Y_2}\!\! \left(\frac{t}{\sqrt{n}}\right)\cdots \varphi_{Y_n}\!\! \left(\frac{t}{\sqrt{n}}\right) \ =\ \left[\varphi_{Y_1}\!\!\left(\frac{t}{\sqrt{n}}\right)\right]^n, </math> where in the last step we used the fact that all of the <math display="inline">Y_i</math> are identically distributed. The characteristic function of <math display="inline">Y_1</math> is, by [[Taylor's theorem]], <math display="block">\varphi_{Y_1}\!\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + o\!\left(\frac{t^2}{n}\right), \quad \left(\frac{t}{\sqrt{n}}\right) \to 0</math> where <math display="inline">o(t^2 / n)</math> is "[[Little-o notation|little {{mvar|o}} notation]]" for some function of <math display="inline">t</math> that goes to zero more rapidly than {{nowrap|<math display="inline">t^2 / n</math>.}} By the limit of the [[exponential function]] {{nowrap|(<math display="inline">e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n</math>),}} the characteristic function of <math>Z_n</math> equals <math display="block">\varphi_{Z_n}(t) = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right)^n \rightarrow e^{-\frac{1}{2} t^2}, \quad n \to \infty.</math> All of the higher order terms vanish in the limit {{nowrap|<math display="inline">n\to\infty</math>.}} The right hand side equals the characteristic function of a standard normal distribution <math display="inline">\mathcal{N}(0, 1)</math>, which implies through [[Lévy continuity theorem|Lévy's continuity theorem]] that the distribution of <math display="inline">Z_n</math> will approach <math display="inline">\mathcal{N}(0,1)</math> as {{nowrap|<math display="inline">n\to\infty</math>.}} Therefore, the [[sample mean|sample average]] <math display="block">\bar{X}_n = \frac{X_1+\cdots+X_n}{n}</math> is such that <math display="block">\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) = Z_n</math> converges to the normal distribution {{nowrap|<math display="inline">\mathcal{N}(0, 1)</math>,}} from which the central limit theorem follows.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)