Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Differentiation and integration=== The derivatives of the polynomials can be less than straightforward. By differentiating the polynomials in their trigonometric forms, it can be shown that: <math display="block">\begin{align} \frac{\mathrm{d}T_n}{\mathrm{d}x} &= n U_{n - 1} \\ \frac{\mathrm{d}U_n}{\mathrm{d}x} &= \frac{(n + 1)T_{n + 1} - x U_n}{x^2 - 1} \\ \frac{\mathrm{d}^2 T_n}{\mathrm{d}x^2} &= n\, \frac{n T_n - x U_{n - 1}}{x^2 - 1} = n\, \frac{(n + 1)T_n - U_n}{x^2 - 1}. \end{align}</math> The last two formulas can be numerically troublesome due to the division by zero ({{Sfrac|0|0}} [[indeterminate form]], specifically) at {{math|1=''x'' = 1}} and {{math|1=''x'' = −1}}. By [[L'Hôpital's rule]]: <math display="block">\begin{align} \left. \frac{\mathrm{d}^2 T_n}{\mathrm{d}x^2} \right|_{x = 1} \!\! &= \frac{n^4 - n^2}{3}, \\ \left. \frac{\mathrm{d}^2 T_n}{\mathrm{d}x^2} \right|_{x = -1} \!\! &= (-1)^n \frac{n^4 - n^2}{3}. \end{align}</math> More generally, <math display="block">\left.\frac{\mathrm{d}^p T_n}{\mathrm{d}x^p} \right|_{x = \pm 1} \!\! = (\pm 1)^{n+p}\prod_{k=0}^{p-1}\frac{n^2-k^2}{2k+1}~,</math> which is of great use in the numerical solution of [[eigenvalue]] problems. Also, we have: <math display="block">\frac{\mathrm{d}^p}{\mathrm{d}x^p}\,T_n(x) = 2^p\,n\mathop{{\sum}'}_{0\leq k\leq n-p\atop k \,\equiv\, n-p \pmod 2} \binom{\frac{n+p-k}{2}-1}{\frac{n-p-k}{2}}\frac{\left(\frac{n+p+k}{2}-1\right)!}{\left(\frac{n-p+k}{2}\right)!}\,T_k(x),~\qquad p \ge 1,</math> where the prime at the summation symbols means that the term contributed by {{math|1=''k'' = 0}} is to be halved, if it appears. Concerning integration, the first derivative of the {{mvar|T<sub>n</sub>}} implies that: <math display="block">\int U_n\, \mathrm{d}x = \frac{T_{n + 1}}{n + 1}</math> and the recurrence relation for the first kind polynomials involving derivatives establishes that for {{math|''n'' ≥ 2}}: <math display="block">\int T_n\, \mathrm{d}x = \frac{1}{2}\,\left(\frac{T_{n + 1}}{n + 1} - \frac{T_{n - 1}}{n - 1}\right) = \frac{n\,T_{n + 1}}{n^2 - 1} - \frac{x\,T_n}{n - 1}.</math> The last formula can be further manipulated to express the integral of {{mvar|T<sub>n</sub>}} as a function of Chebyshev polynomials of the first kind only: <math display="block">\begin{align} \int T_n\, \mathrm{d}x &= \frac{n}{n^2 - 1} T_{n + 1} - \frac{1}{n - 1} T_1 T_n \\ &= \frac{n}{n^2 - 1}\,T_{n + 1} - \frac{1}{2(n - 1)}\,(T_{n + 1} + T_{n - 1}) \\ &= \frac{1}{2(n + 1)}\,T_{n + 1} - \frac{1}{2(n - 1)}\,T_{n - 1}. \end{align}</math> Furthermore, we have: <math display="block">\int_{-1}^1 T_n(x)\, \mathrm{d}x = \begin{cases} \frac{(-1)^n + 1}{1 - n^2} & \text{ if }~ n \ne 1 \\ 0 & \text{ if }~ n = 1. \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)