Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classical orthogonal polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Orthogonality === The differential equation for a particular ''Ξ»'' may be written (omitting explicit dependence on x) :<math>Q\ddot{f}_n+L\dot{f}_n+\lambda_nf_n=0</math> multiplying by <math>(R/Q)f_m</math> yields :<math>Rf_m\ddot{f}_n+\frac{R}{Q}Lf_m\dot{f}_n+\frac{R}{Q}\lambda_nf_mf_n=0</math> and reversing the subscripts yields :<math>Rf_n\ddot{f}_m+\frac{R}{Q}Lf_n\dot{f}_m+\frac{R}{Q}\lambda_mf_nf_m=0</math> subtracting and integrating: :<math> \int_a^b \left[R(f_m\ddot{f}_n-f_n\ddot{f}_m)+ \frac{R}{Q}L(f_m\dot{f}_n-f_n\dot{f}_m)\right] \, dx +(\lambda_n-\lambda_m)\int_a^b \frac{R}{Q}f_mf_n \, dx = 0 </math> but it can be seen that :<math> \frac{d}{dx}\left[R(f_m\dot{f}_n-f_n\dot{f}_m)\right]= R(f_m\ddot{f}_n-f_n\ddot{f}_m)\,\,+\,\,R\frac{L}{Q}(f_m\dot{f}_n-f_n\dot{f}_m) </math> so that: :<math>\left[R(f_m\dot{f}_n-f_n\dot{f}_m)\right]_a^b\,\,+\,\,(\lambda_n-\lambda_m)\int_a^b \frac{R}{Q}f_mf_n \, dx=0</math> If the polynomials ''f'' are such that the term on the left is zero, and <math>\lambda_m \ne \lambda_n</math> for <math>m \ne n</math>, then the orthogonality relationship will hold: :<math>\int_a^b \frac{R}{Q}f_mf_n \, dx=0</math> for <math>m \ne n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)