Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cluster analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== [[Dunn index]] ==== The Dunn index aims to identify dense and well-separated clusters. It is defined as the ratio between the minimal inter-cluster distance to maximal intra-cluster distance. For each cluster partition, the Dunn index can be calculated by the following formula:<ref>{{Cite journal | last = Dunn | first = J. | title = Well separated clusters and optimal fuzzy partitions | journal = Journal of Cybernetics | year = 1974 | volume = 4 | pages = 95β104 | doi = 10.1080/01969727408546059 }}</ref> :<math> D = \frac{\min_{1 \leq i < j \leq n} d(i,j)}{\max_{1 \leq k \leq n} d^{\prime}(k)} \,, </math> where ''d''(''i'',''j'') represents the distance between clusters ''i'' and ''j'', and ''d'' '(''k'') measures the intra-cluster distance of cluster ''k''. The inter-cluster distance ''d''(''i'',''j'') between two clusters may be any number of distance measures, such as the distance between the [[centroids]] of the clusters. Similarly, the intra-cluster distance ''d'' '(''k'') may be measured in a variety of ways, such as the maximal distance between any pair of elements in cluster ''k''. Since internal criterion seek clusters with high intra-cluster similarity and low inter-cluster similarity, algorithms that produce clusters with high Dunn index are more desirable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)