Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples of discontinuous functions=== [[File:Discontinuity of the sign function at 0.svg|thumb|300px|Plot of the signum function. It shows that <math>\lim_{n\to\infty} \sgn\left(\tfrac 1 n\right) \neq \sgn\left(\lim_{n\to\infty} \tfrac 1 n\right)</math>. Thus, the signum function is discontinuous at 0 (see [[#Definition in terms of limits of sequences|section 2.1.3]]).]] An example of a discontinuous function is the [[Heaviside step function]] <math>H</math>, defined by <math display="block">H(x) = \begin{cases} 1 & \text{ if } x \ge 0\\ 0 & \text{ if } x < 0 \end{cases} </math> Pick for instance <math>\varepsilon = 1/2</math>. Then there is no {{nowrap|<math>\delta</math>-neighborhood}} around <math>x = 0</math>, i.e. no open interval <math>(-\delta,\;\delta)</math> with <math>\delta > 0,</math> that will force all the <math>H(x)</math> values to be within the {{nowrap|<math>\varepsilon</math>-neighborhood}} of <math>H(0)</math>, i.e. within <math>(1/2,\;3/2)</math>. Intuitively, we can think of this type of discontinuity as a sudden [[Jump discontinuity|jump]] in function values. Similarly, the [[Sign function|signum]] or sign function <math display="block"> \sgn(x) = \begin{cases} \;\;\ 1 & \text{ if }x > 0\\ \;\;\ 0 & \text{ if }x = 0\\ -1 & \text{ if }x < 0 \end{cases} </math> is discontinuous at <math>x = 0</math> but continuous everywhere else. Yet another example: the function <math display="block">f(x) = \begin{cases} \sin\left(x^{-2}\right)&\text{ if }x \neq 0\\ 0&\text{ if }x = 0 \end{cases}</math> is continuous everywhere apart from <math>x = 0</math>. [[File:Thomae function (0,1).svg|200px|right|thumb|Point plot of Thomae's function on the interval (0,1). The topmost point in the middle shows f(1/2) = 1/2.]] Besides plausible continuities and discontinuities like above, there are also functions with a behavior, often coined [[Pathological (mathematics)|pathological]], for example, [[Thomae's function]], <math display="block">f(x)=\begin{cases} 1 &\text{ if } x=0\\ \frac{1}{q}&\text{ if } x = \frac{p}{q} \text{(in lowest terms) is a rational number}\\ 0&\text{ if }x\text{ is irrational}. \end{cases}</math> is continuous at all irrational numbers and discontinuous at all rational numbers. In a similar vein, [[Dirichlet's function]], the [[indicator function]] for the set of rational numbers, <math display="block">D(x)=\begin{cases} 0&\text{ if }x\text{ is irrational } (\in \R \setminus \Q)\\ 1&\text{ if }x\text{ is rational } (\in \Q) \end{cases}</math> is nowhere continuous.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)