Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cutting fluid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Air or other gases (e.g., nitrogen) === Ambient air, of course, was the original machining coolant. Compressed air, supplied through pipes and hoses from an [[air compressor]] and discharged from a nozzle aimed at the tool, is sometimes a useful coolant. The force of the decompressing air stream blows chips away, and the decompression itself has a slight degree of cooling action. The net result is that the heat of the machining cut is carried away a bit better than by ambient air alone. Sometimes liquids are added to the air stream to form a mist (mist coolant systems, [[#Aerosols (mists)|described above]]). [[Liquid nitrogen]], supplied in pressurized steel bottles, is sometimes used in similar fashion. In this case, boiling is enough to provide a powerful refrigerating effect. For years this has been done (in limited applications) by flooding the work zone. Since 2005, this mode of coolant has been applied in a manner comparable to [[#MQL|MQL]] (with through-the-spindle and through-the-tool-tip delivery). This refrigerates the body and tips of the tool to such a degree that it acts as a "thermal sponge", sucking up the heat from the tool–chip interface.<ref name="Z2">{{Citation |last=Zelinski |first=Peter |date=2011-01-28 |title=The 400° difference |journal=Modern Machine Shop |volume=83 |issue=10 |url=http://www.mmsonline.com/articles/the-400-difference }}</ref> This new type of nitrogen cooling is still under patent. Tool life has been increased by a factor of 10 in the milling of tough metals such as [[titanium]] and [[inconel]].<ref name="Z2"/> Alternatively, using airflow combined with a quick evaporating substance (ex. alcohol, water etc.) can be used as an effective coolant when handling hot pieces that cannot be cooled by alternate methods.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)