Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Digamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Some finite sums involving the digamma function== There are numerous finite summation formulas for the digamma function. Basic summation formulas, such as :<math>\sum_{r=1}^m \psi\left(\frac{r}{m}\right)=-m(\gamma+\ln m),</math> :<math>\sum_{r=1}^m \psi\left(\frac{r}{m}\right)\cdot\exp\dfrac{2\pi rki}{m} = m\ln \left(1-\exp\frac{2\pi ki}{m}\right), \qquad k\in\Z,\quad m\in\N,\ k\ne m</math> :<math>\sum_{r=1}^{m-1} \psi\left(\frac{r}{m}\right)\cdot\cos\dfrac{2\pi rk}{m} = m \ln \left(2\sin\frac{k\pi}{m}\right)+\gamma, \qquad k=1, 2,\ldots, m-1 </math> : <math>\sum_{r=1}^{m-1}\psi \left(\frac{r}{m}\right) \cdot\sin\frac{2\pi rk}{m} =\frac{\pi}{2} (2k-m), \qquad k=1, 2,\ldots, m-1 </math> are due to Gauss.<ref>R. Campbell. ''Les intégrales eulériennes et leurs applications'', Dunod, Paris, 1966.</ref><ref>H.M. Srivastava and J. Choi. ''Series Associated with the Zeta and Related Functions'', Kluwer Academic Publishers, the Netherlands, 2001.</ref> More complicated formulas, such as : <math>\sum_{r=0}^{m-1} \psi \left(\frac{2r+1}{2m}\right)\cdot\cos\frac{(2r+1)k\pi }{m} = m\ln\left(\tan\frac{\pi k}{2m}\right) ,\qquad k=1, 2,\ldots, m-1</math> : <math>\sum_{r=0}^{m-1} \psi \left(\frac{2r+1}{2m}\right)\cdot\sin\dfrac{(2r+1)k\pi }{m} = -\frac{\pi m}{2}, \qquad k=1, 2,\ldots, m-1</math> :<math>\sum_{r=1}^{m-1} \psi\left(\frac{r}{m}\right)\cdot\cot\frac{\pi r}{m}= -\frac{\pi(m-1)(m-2)}{6}</math> :<math>\sum_{r=1}^{m-1}\psi \left(\frac{r}{m}\right)\cdot \frac{r}{m}=-\frac{\gamma}{2}(m-1)-\frac{m}{2}\ln m -\frac{\pi}{2}\sum_{r=1}^{m-1} \frac{r}{m}\cdot\cot\frac{\pi r}{m} </math> :<math>\sum_{r=1}^{m-1}\psi \left(\frac{r}{m}\right) \cdot\cos\dfrac{(2\ell+1)\pi r}{m}= -\frac{\pi}{m}\sum_{r=1}^{m-1} \frac{r \cdot\sin\dfrac{2\pi r}{m}}{\cos\dfrac{2\pi r}{m} -\cos\dfrac{(2\ell+1)\pi }{m} }, \qquad \ell\in\mathbb{Z} </math> :<math>\sum_{r=1}^{m-1}\psi \left(\frac{r}{m}\right) \cdot\sin\dfrac{(2\ell+1)\pi r}{m}=-(\gamma+\ln2m)\cot\frac{(2\ell+1)\pi}{2m} + \sin\dfrac{(2\ell+1)\pi }{m}\sum_{r=1}^{m-1} \frac{\ln\sin\dfrac{\pi r}{m}} {\cos\dfrac{2\pi r}{m} -\cos\dfrac{(2\ell+1)\pi }{m} } , \qquad \ell\in\mathbb{Z}</math> :<math>\sum_{r=1}^{m-1} \psi^2\left(\frac{r}{m}\right)= (m-1)\gamma^2 + m(2\gamma+\ln4m)\ln{m} -m(m-1)\ln^2 2 +\frac{\pi^2 (m^2-3m+2)}{12} +m\sum_{\ell=1}^{ m-1 } \ln^2 \sin\frac{\pi\ell}{m}</math> are due to works of certain modern authors (see e.g. Appendix B in Blagouchine (2014)<ref name="iaroslav_07">{{cite journal|doi=10.1016/j.jnt.2014.08.009 |first=Iaroslav V. |last=Blagouchine |title=A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations |journal=Journal of Number Theory |volume=148 |pages=537–592 |date=2014 |arxiv=1401.3724}}</ref>). We also have <ref>{{cite book |title=Classical topi s in complex function theorey |pages=46}}</ref> :<math> 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}-\gamma=\frac{1}{k}\sum_{n=0}^{k-1}\psi\left(1+\frac{n}{k}\right), k=2,3, ...</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)