Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Orthogonality == The two orthogonality relations are<ref>See [[#Relation to group characters]] above.</ref> :<math>\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi(a)= \begin{cases} \phi(m)&\text{ if }\;\chi=\chi_0\\ 0&\text{ if }\;\chi\ne\chi_0 \end{cases} </math> and <math>\sum_{\chi\in\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}}\chi(a)= \begin{cases} \phi(m)&\text{ if }\;a\equiv 1\pmod{m}\\ 0&\text{ if }\;a\not\equiv 1\pmod{m}. \end{cases} </math> The relations can be written in the symmetric form :<math>\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi_{m,r}(a)= \begin{cases} \phi(m)&\text{ if }\;r\equiv 1\\ 0&\text{ if }\;r\not\equiv 1 \end{cases} </math> and <math>\sum_{r\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi_{m,r}(a)= \begin{cases} \phi(m)&\text{ if }\;a\equiv 1\\ 0&\text{ if }\;a\not\equiv 1. \end{cases} </math> The first relation is easy to prove: If <math>\chi=\chi_0</math> there are <math>\phi(m)</math> non-zero summands each equal to 1. If <math>\chi\ne\chi_0</math>there is<ref>by the definition of <math>\chi_0</math></ref> some <math>a^*,\; (a^*,m)=1,\;\chi(a^*)\ne1.</math> Then :<math>\chi(a^*)\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi(a)=\sum_{a}\chi(a^*) \chi(a)=\sum_{a} \chi(a^*a)=\sum_{a} \chi(a), </math><ref name="permute">because multiplying every element in a group by a constant element merely permutes the elements. See [[Group (mathematics)]]</ref> implying :<math>(\chi(a^*)-1)\sum_{a} \chi(a)=0.</math> Dividing by the first factor gives <math>\sum_{a} \chi(a)=0,</math> QED. The identity <math>\chi_{m,r}(s)=\chi_{m,s}(r)</math> for <math>(rs,m)=1</math> shows that the relations are equivalent to each other. The second relation can be proven directly in the same way, but requires a lemma<ref>Davenport p. 30 (paraphrase) To prove [the second relation] one has to use ideas that we have used in the construction [as in this article or Landau pp. 109-114], or appeal to the basis theorem for abelian groups [as in Ireland & Rosen pp. 253-254]</ref> :Given <math>a \not\equiv 1\pmod{m},\;(a,m)=1,</math> there is a <math> \chi^*,\; \chi^*(a)\ne1.</math> The second relation has an important corollary: if <math>(a,m)=1,</math> define the function :<math>f_a(n)=\frac{1}{\phi(m)} \sum_{\chi} \bar{\chi}(a) \chi(n). </math> Then :<math>f_a(n) = \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}) \chi(n) = \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}n) = \begin{cases} 1, & n \equiv a \pmod{m} \\ 0, & n\not\equiv a\pmod{m},\end{cases}</math> That is <math>f_a=\mathbb{1}_{[a]}</math> the [[indicator function]] of the residue class <math>[a]=\{ x:\;x\equiv a \pmod{m}\}</math>. It is basic in the proof of Dirichlet's theorem.<ref>Davenport chs. 1, 4; Landau p. 114</ref><ref>Note that if <math>g:(\mathbb{Z}/m\mathbb{Z})^\times\rightarrow\mathbb{C} </math> is any function <math>g(n)=\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} g(a)f_a(n)</math>; see [[Fourier transform on finite groups#Fourier transform for finite abelian groups]]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)