Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Circular convolution theorem and cross-correlation theorem=== {{Main|Convolution theorem#Functions of a discrete variable (sequences)}} The [[DTFT#Convolution|convolution theorem]] for the [[discrete-time Fourier transform]] (DTFT) indicates that a convolution of two sequences can be obtained as the inverse transform of the product of the individual transforms. An important simplification occurs when one of sequences is N-periodic, denoted here by <math>y_{_N},</math> because <math>\scriptstyle \text{DTFT} \displaystyle \{y_{_N}\}</math> is non-zero at only discrete frequencies (see {{slink|DTFT#Periodic_data}}), and therefore so is its product with the continuous function <math>\scriptstyle \text{DTFT} \displaystyle \{x\}.</math> That leads to a considerable simplification of the inverse transform. :<math>x * y_{_N}\ =\ \scriptstyle{\rm DTFT}^{-1} \displaystyle \left[\scriptstyle{\rm DTFT} \displaystyle \{x\}\cdot \scriptstyle{\rm DTFT} \displaystyle \{y_{_N}\}\right]\ =\ \scriptstyle{\rm DFT}^{-1} \displaystyle \left[\scriptstyle{\rm DFT} \displaystyle \{x_{_N}\}\cdot \scriptstyle{\rm DFT} \displaystyle \{y_{_N}\}\right],</math> where <math>x_{_N}</math> is a [[periodic summation]] of the <math>x</math> sequence''':''' <math>(x_{_N})_n\ \triangleq \sum_{m=-\infty}^{\infty} x_{(n-mN)}.</math> Customarily, the DFT and inverse DFT summations are taken over the domain <math>[0,N-1]</math>. Defining those DFTs as <math>X</math> and <math>Y</math>, the result is''':''' :<math> (x * y_{_N})_n \triangleq \sum_{\ell=-\infty}^{\infty}x_\ell \cdot (y_{_N})_{n-\ell} = \underbrace{\mathcal{F}^{-1}}_{\rm DFT^{-1}} \left \{ X\cdot Y \right \}_n.</math> In practice, the <math>x</math> sequence is usually length ''N'' or less, and <math>y_{_N}</math> is a periodic extension of an N-length <math>y</math>-sequence, which can also be expressed as a ''circular function''''':''' :<math>(y_{_N})_n = \sum_{p=-\infty}^\infty y_{(n-pN)} = y_{(n\operatorname{mod}N)}, \quad n\in\mathbb{Z}.</math> Then the convolution can be written as''':''' {{Equation box 1|title= |indent =: |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA |equation = :<math> \mathcal{F}^{-1} \left \{ X\cdot Y \right \}_n = \sum_{\ell=0}^{N-1}x_\ell \cdot y_{_{(n-\ell)\operatorname{mod}N}} </math> }} which gives rise to the interpretation as a ''circular'' convolution of <math>x</math> and <math>y.</math><ref name=Oppenheim/><ref name=McGillem/> It is often used to efficiently compute their linear convolution. (see [[Circular convolution#Example|Circular convolution]], [[Convolution#Fast convolution algorithms|Fast convolution algorithms]], and [[Overlap-save method|Overlap-save]]) Similarly, the [[cross-correlation]] of <math>x</math> and <math>y_{_N}</math> is given by''':''' :<math>(x \star y_{_N})_n \triangleq \sum_{\ell=-\infty}^{\infty} x_\ell^* \cdot (y_{_N})_{n+\ell} = \mathcal{F}^{-1} \left \{ X^* \cdot Y \right \}_n.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)