Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distance geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Embedding ''n'' + 1 points in the real numbers === Given a semimetric space <math> (S,d)</math> , with <math>S = \{P_0, \ldots, P_n\}</math>, and <math>d(P_i, P_j) = d_{ij}\ge 0</math>, <math>0 \le i < j \le n</math>, an isometric embedding of <math>(S, d)</math> into <math>\mathbb{R}^n</math> is defined by <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^n</math>, such that <math>d(A_i, A_j) = d_{ij}</math> for all <math>0 \le i < j \le n</math>. Again, one asks whether such an isometric embedding exists for <math>(S,d)</math>. A necessary condition is easy to see: for all <math>k = 1, \ldots, n</math>, let <math>v_k</math> be the ''k''-simplex formed by <math display="inline">A_0, A_1,\ldots, A_k</math>, then :<math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) = (-1)^{k+1} \operatorname{CM}(A_0, \ldots, A_k) = 2^k (k!)^k \operatorname{Vol}_k(v_k)^2 \ge 0</math> The converse also holds. That is, if for all <math>k = 1, \ldots, n</math>, :<math>(-1)^{k+1}\operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> then such an embedding exists. Further, such embedding is unique up to isometry in <math>\mathbb{R}^n</math>. That is, given any two isometric embeddings defined by <math>A_0, A_1,\ldots, A_n</math>, and <math>A'_0, A'_1,\ldots, A'_n</math>, there exists a (not necessarily unique) isometry <math>T : \mathbb R^n \to \mathbb R^n</math>, such that <math>T(A_k) = A'_k</math> for all <math>k = 0, \ldots, n</math>. Such <math>T</math> is unique if and only if <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, that is, <math>A_0, A_1,\ldots, A_n</math> are affinely independent.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)