Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Double factorial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalized Stirling numbers expanding the multifactorial functions=== A class of generalized [[Stirling numbers of the first kind]] is defined for {{math|''α'' > 0}} by the following triangular recurrence relation: <math display="block">\left[\begin{matrix} n \\ k \end{matrix} \right]_{\alpha} = (\alpha n+1-2\alpha) \left[\begin{matrix} n-1 \\ k \end{matrix} \right]_{\alpha} + \left[\begin{matrix} n-1 \\ k-1 \end{matrix} \right]_{\alpha} + \delta_{n,0} \delta_{k,0}\,. </math> These generalized ''{{mvar|α}}-factorial coefficients'' then generate the distinct symbolic polynomial products defining the multiple factorial, or {{mvar|α}}-factorial functions, {{math|(''x'' − 1)!<sub>(''α'')</sub>}}, as <math display="block"> \begin{align} (x-1|\alpha)^{\underline{n}} & := \prod_{i=0}^{n-1} \left(x-1-i\alpha\right) \\ & = (x-1)(x-1-\alpha)\cdots\bigl(x-1-(n-1)\alpha\bigr) \\ & = \sum_{k=0}^n \left[\begin{matrix} n \\ k \end{matrix} \right] (-\alpha)^{n-k} (x-1)^k \\ & = \sum_{k=1}^n \left[\begin{matrix} n \\ k \end{matrix} \right]_{\alpha} (-1)^{n-k} x^{k-1}\,. \end{align} </math> The distinct polynomial expansions in the previous equations actually define the {{mvar|α}}-factorial products for multiple distinct cases of the least residues {{math|''x'' ≡ ''n''<sub>0</sub> mod ''α''}} for {{math|''n''<sub>0</sub> ∈ {0, 1, 2, ..., ''α'' − 1<nowiki>}</nowiki>}}. The generalized {{mvar|α}}-factorial polynomials, {{math|''σ''{{su|b=''n''|p=(''α'')}}(''x'')}} where {{math|''σ''{{su|b=''n''|p=(1)}}(''x'') ≡ ''σ''<sub>''n''</sub>(''x'')}}, which generalize the [[Stirling polynomial#Stirling convolution polynomials|Stirling convolution polynomials]] from the single factorial case to the multifactorial cases, are defined by <math display="block">\sigma_n^{(\alpha)}(x) := \left[\begin{matrix} x \\ x-n \end{matrix} \right]_{(\alpha)} \frac{(x-n-1)!}{x!}</math> for {{math|0 ≤ ''n'' ≤ ''x''}}. These polynomials have a particularly nice closed-form [[ordinary generating function]] given by <math display="block">\sum_{n \geq 0} x \cdot \sigma_n^{(\alpha)}(x) z^n = e^{(1-\alpha)z} \left(\frac{\alpha z e^{\alpha z}}{e^{\alpha z}-1}\right)^x\,. </math> Other combinatorial properties and expansions of these generalized {{mvar|α}}-factorial triangles and polynomial sequences are considered in {{harvtxt|Schmidt|2010}}.<ref>{{cite journal|last1=Schmidt|first1=Maxie D.|title=Generalized ''j''-Factorial Functions, Polynomials, and Applications|journal=J. Integer Seq.|date=2010|volume=13|url=https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)