Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's totient function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Other formulae== <ul> <li><math>a\mid b \implies \varphi(a)\mid\varphi(b)</math></li> <li><math> m \mid \varphi(a^m-1)</math></li> <li><math>\varphi(mn) = \varphi(m)\varphi(n)\cdot\frac{d}{\varphi(d)} \quad\text{where }d = \operatorname{gcd}(m,n)</math> <p>In particular:</p> *<math>\varphi(2m) = \begin{cases} 2\varphi(m) &\text{ if } m \text{ is even} \\ \varphi(m) &\text{ if } m \text{ is odd} \end{cases}</math> *<math>\varphi\left(n^m\right) = n^{m-1}\varphi(n)</math></li> <li><math>\varphi(\operatorname{lcm}(m,n))\cdot\varphi(\operatorname{gcd}(m,n)) = \varphi(m)\cdot\varphi(n)</math> <p>Compare this to the formula <math display=inline>\operatorname{lcm}(m,n)\cdot \operatorname{gcd}(m,n) = m \cdot n</math> (see [[least common multiple]]).</p> </li> <li>{{math|''φ''(''n'')}} is even for {{math|''n'' ≥ 3}}. <p>Moreover, if {{mvar|n}} has {{mvar|r}} distinct odd prime factors, {{math|2<sup>''r''</sup> {{!}} ''φ''(''n'')}}</p></li> <li> For any {{math|''a'' > 1}} and {{math|''n'' > 6}} such that {{math|4 ∤ ''n''}} there exists an {{math|''l'' ≥ 2''n''}} such that {{math|''l'' {{!}} ''φ''(''a<sup>n</sup>'' − 1)}}.</li> <li><math>\frac{\varphi(n)}{n}=\frac{\varphi(\operatorname{rad}(n))}{\operatorname{rad}(n)}</math> <p>where {{math|rad(''n'')}} is the [[radical of an integer|radical of {{mvar|n}}]] (the product of all distinct primes dividing {{mvar|[[radical of an integer|n]]}}).</p></li> <li><math>\sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)} = \frac{n}{\varphi(n)}</math> <ref>Dineva (in external refs), prop. 1</ref></li> <li><math>\sum_{1\le k\le n-1 \atop gcd(k,n)=1}\!\!k = \tfrac12 n\varphi(n) \quad \text{for }n>1</math></li> <li><math>\sum_{k=1}^n\varphi(k) = \tfrac12 \left(1+ \sum_{k=1}^n \mu(k)\left\lfloor\frac{n}{k}\right\rfloor^2\right) =\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac43\right)</math> (<ref name=Wal1963>{{cite book | zbl=0146.06003 | last=Walfisz | first=Arnold | author-link=Arnold Walfisz | title=Weylsche Exponentialsummen in der neueren Zahlentheorie | language=de | series=Mathematische Forschungsberichte | volume=16 | location=Berlin | publisher=[[VEB Deutscher Verlag der Wissenschaften]] | year=1963 }}</ref> cited in<ref>{{citation | last = Lomadse | first = G. | title = The scientific work of Arnold Walfisz | journal = Acta Arithmetica | year = 1964 | volume = 10 | issue = 3 | pages = 227–237 | doi = 10.4064/aa-10-3-227-237 | url = http://matwbn.icm.edu.pl/ksiazki/aa/aa10/aa10111.pdf}}</ref>)</li> <li><math>\sum_{k=1}^n\varphi(k) =\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac13\right) </math> [Liu (2016)] </li> <li><math>\sum_{k=1}^n\frac{\varphi(k)}{k} = \sum_{k=1}^n\frac{\mu(k)}{k}\left\lfloor\frac{n}{k}\right\rfloor=\frac6{\pi^2}n+O\left((\log n)^\frac23(\log\log n)^\frac43\right)</math> <ref name="Wal1963" /></li> <li><math>\sum_{k=1}^n\frac{k}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}n-\frac{\log n}2+O\left((\log n)^\frac23\right)</math> <ref name="Sita">{{cite journal|first=R. |last=Sitaramachandrarao |title=On an error term of Landau II |journal=Rocky Mountain J. Math. |volume=15 |date=1985 |issue=2 |pages=579–588|doi=10.1216/RMJ-1985-15-2-579 |doi-access=free }}</ref></li> <li><math>\sum_{k=1}^n\frac{1}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}\left(\log n+\gamma-\sum_{p\text{ prime}}\frac{\log p}{p^2-p+1}\right)+O\left(\frac{(\log n)^\frac23}n\right)</math> <ref name="Sita" /><p>(where {{mvar|γ}} is the [[Euler–Mascheroni constant]]).</p></li> </ul> ===Menon's identity=== {{Main article|Arithmetic_function#Menon.27s_identity|l1=Menon's identity}} In 1965 P. Kesava Menon proved :<math>\sum_{\stackrel{1\le k\le n}{ \gcd(k,n)=1}} \!\!\!\! \gcd(k-1,n)=\varphi(n)d(n),</math> where {{math|[[Divisor function|''d''(''n'') {{=}} ''σ''<sub>0</sub>(''n'')]]}} is the number of divisors of {{mvar|n}}. ===Divisibility by any fixed positive integer=== The following property, which is part of the « folklore » (i.e., apparently unpublished as a specific result:<ref> {{citation | last = Pollack | first = P. | title = Two problems on the distribution of Carmichael's lambda function | journal = Mathematika | year = 2023 | volume = 69 | issue = 4| pages = 1195–1220 | doi = 10.1112/mtk.12222 | url = | doi-access = free | arxiv = 2303.14043 }}</ref> see the introduction of this article in which it is stated as having « long been known ») has important consequences. For instance it rules out uniform distribution of the values of <math>\varphi(n)</math> in the arithmetic progressions modulo <math>q</math> for any integer <math>q>1</math>. * For every fixed positive integer <math>q</math>, the relation <math>q|\varphi(n)</math> holds for almost all <math>n</math>, meaning for all but <math>o(x)</math> values of <math>n\le x</math> as <math>x\rightarrow\infty</math>. This is an elementary consequence of the fact that the sum of the reciprocals of the primes congruent to 1 modulo <math>q</math> diverges, which itself is a corollary of the proof of [[Dirichlet's theorem on arithmetic progressions]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)