Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expected value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Expected values of common distributions== The following table gives the expected values of some commonly occurring [[probability distribution]]s. The third column gives the expected values both in the form immediately given by the definition, as well as in the simplified form obtained by computation therefrom. The details of these computations, which are not always straightforward, can be found in the indicated references. {| class="wikitable" !Distribution !Notation !Mean E(X) |- |[[Bernoulli distribution|Bernoulli]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=89|2a1=Ross|2y=2019|2loc=Example 2.16}} |<math>X \sim~ b(1,p)</math> |<math>0\cdot(1-p)+1\cdot p=p</math> |- |[[Binomial distribution|Binomial]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1loc=Example 2.2.3|2a1=Ross|2y=2019|2loc=Example 2.17}} |<math>X \sim B(n,p)</math> |<math>\sum_{i=0}^n i{n\choose i}p^i(1-p)^{n-i}=np</math> |- |[[Poisson distribution|Poisson]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.4|2a1=Casella|2a2=Berger|2y=2001|2p=92|3a1=Ross|3y=2019|3loc=Example 2.19}} |<math>X \sim \mathrm{Po}(\lambda)</math> |<math>\sum_{i=0}^\infty \frac{ie^{-\lambda}\lambda^i}{i!}=\lambda</math> |- |[[Geometric distribution|Geometric]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=97|2a1=Ross|2y=2019|2loc=Example 2.18}} |<math>X \sim \mathrm{Geometric}(p)</math> |<math>\sum_{i=1}^\infty ip(1-p)^{i-1}=\frac{1}{p}</math> |- |[[Uniform distribution (continuous)|Uniform]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=99|2a1=Ross|2y=2019|2loc=Example 2.20}} |<math>X\sim U(a,b)</math> |<math>\int_a^b \frac{x}{b-a}\,dx=\frac{a+b}{2}</math> |- |[[Exponential distribution|Exponential]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.3|2a1=Casella|2a2=Berger|2y=2001|2loc=Example 2.2.2|3a1=Ross|3y=2019|3loc=Example 2.21}} |<math>X\sim \exp(\lambda)</math> |<math>\int_0^\infty \lambda xe^{-\lambda x}\,dx=\frac{1}{\lambda}</math> |- |[[Normal distribution|Normal]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=103|2a1=Ross|2y=2019|2loc=Example 2.22}} |<math>X\sim N(\mu,\sigma^2)</math> |<math>\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^\infty x\, e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2} \,dx = \mu</math> |- |[[Standard normal|Standard Normal]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.1|2a1=Casella|2a2=Berger|2y=2001|2p=103}} |<math>X\sim N(0,1)</math> |<math>\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty xe^{-x^2/2}\,dx=0</math> |- |[[Pareto distribution|Pareto]]{{sfnm|1a1=Johnson|1a2=Kotz|1a3=Balakrishnan|1y=1994|1loc=Chapter 20}} |<math>X\sim \mathrm{Par}(\alpha, k)</math> |<math>\int_k^\infty\alpha k^\alpha x^{-\alpha}\,dx = \begin{cases} \frac{\alpha k}{\alpha-1} &\text{if } \alpha > 1\\ \infty &\text{if } 0 < \alpha \leq 1\end{cases}</math> |- |[[Cauchy distribution|Cauchy]]{{sfnm|1a1=Feller|1y=1971|1loc=Section II.4}} |<math>X\sim \mathrm{Cauchy}(x_0,\gamma)</math> |<math>\frac{1}{\pi}\int_{-\infty}^\infty \frac{\gamma x}{(x - x_0)^2 + \gamma^2}\,dx</math> is [[indeterminate form|undefined]] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)