Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Approximations === There have been a number of approximations for the exponential integral function. These include: * The Swamee and Ohija approximation<ref name=":0">{{Cite journal|title = Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution|journal = Ground Water|date = 2003-05-01|issn = 1745-6584|pages = 387–390|volume = 41| issue = 3|doi = 10.1111/j.1745-6584.2003.tb02608.x|first = Pham Huy|last = Giao| pmid=12772832 | bibcode=2003GrWat..41..387G | s2cid=31982931 }}</ref> <math display="block">E_1(x) = \left (A^{-7.7}+B \right )^{-0.13},</math> where <math display="block">\begin{align} A &= \ln\left [\left (\frac{0.56146}{x}+0.65\right)(1+x)\right] \\ B &= x^4e^{7.7x}(2+x)^{3.7} \end{align}</math> * The Allen and Hastings approximation <ref name=":0" /><ref name=":1">{{Cite journal|title = Numerical evaluation of exponential integral: Theis well function approximation|journal = Journal of Hydrology|date = 1998-02-26|pages = 38–51|volume = 205|issue = 1–2|doi = 10.1016/S0022-1694(97)00134-0|first1 = Peng-Hsiang|last1 = Tseng|first2 = Tien-Chang|last2 = Lee|bibcode = 1998JHyd..205...38T }}</ref> <math display="block">E_1(x) = \begin{cases} - \ln x +\textbf{a}^T\textbf{x}_5,&x\leq1 \\ \frac{e^{-x}} x \frac{\textbf{b}^T \textbf{x}_3}{\textbf{c}^T\textbf{x}_3},&x\geq1 \end{cases}</math> where <math display="block">\begin{align} \textbf{a} & \triangleq [-0.57722, 0.99999, -0.24991, 0.05519, -0.00976, 0.00108]^T \\ \textbf{b} & \triangleq[0.26777,8.63476, 18.05902, 8.57333]^T \\ \textbf{c} & \triangleq[3.95850, 21.09965, 25.63296, 9.57332]^T \\ \textbf{x}_k &\triangleq[x^0,x^1,\dots, x^k]^T \end{align}</math> * The continued fraction expansion <ref name=":1" /> <math display="block">E_1(x) = \cfrac{e^{-x}}{x+\cfrac{1}{1+\cfrac{1}{x+\cfrac{2}{1+\cfrac{2}{x+\cfrac{3}{\ddots}}}}}}.</math> * The approximation of Barry ''et al.'' <ref>{{Cite journal|title = Approximation for the exponential integral (Theis well function) |journal = Journal of Hydrology|date = 2000-01-31| pages = 287–291|volume = 227|issue = 1–4|doi = 10.1016/S0022-1694(99)00184-5|first1 = D. A|last1 = Barry|first2 = J. -Y|last2 = Parlange |first3 = L|last3 = Li|bibcode = 2000JHyd..227..287B }}</ref> <math display="block">E_1(x) = \frac{e^{-x}}{G+(1-G)e^{-\frac{x}{1-G}}}\ln\left[1+\frac G x -\frac{1-G}{(h+bx)^2}\right],</math> where: <math display="block">\begin{align} h &= \frac{1}{1+x\sqrt{x}}+\frac{h_{\infty}q}{1+q} \\ q &=\frac{20}{47}x^{\sqrt{\frac{31}{26}}} \\ h_{\infty} &= \frac{(1-G)(G^2-6G+12)}{3G(2-G)^2b} \\ b &=\sqrt{\frac{2(1-G)}{G(2-G)}} \\ G &= e^{-\gamma} \end{align}</math> with <math>\gamma</math> being the [[Euler–Mascheroni constant]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)