Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extended periodic table
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Unbinilium (E120) <span class="anchor" id="Unbinilium"></span> ==== Following their success in obtaining [[oganesson]] by the reaction between [[californium-249|<sup>249</sup>Cf]] and [[calcium-48|<sup>48</sup>Ca]] in 2006, the team at the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]] started similar experiments in March–April 2007, in hope of creating [[unbinilium|element 120]] (unbinilium) from nuclei of [[iron-58|<sup>58</sup>Fe]] and [[plutonium-244|<sup>244</sup>Pu]].<ref>{{cite news|url=https://www.llnl.gov/str/April07/pdfs/04_07.4.pdf|title=A New Block on the Periodic Table|date=April 2007|publisher=Lawrence Livermore National Laboratory|access-date=2008-01-18|archive-url=https://web.archive.org/web/20080528130457/https://www.llnl.gov/str/April07/pdfs/04_07.4.pdf|archive-date=2008-05-28|url-status=dead}}</ref><ref>{{cite web |url=http://wwwinfo.jinr.ru/plan/ptp-2007/e751004.htm |title=Synthesis of New Nuclei and Study of Nuclear Properties and Heavy-Ion Reaction Mechanisms |last1=Itkis |first1=M. G. |last2=Oganessian |first2=Yu. Ts. |date=2007 |website=jinr.ru |publisher=Joint Institute for Nuclear Research |access-date=23 September 2016}}</ref> Isotopes of unbinilium are predicted to have alpha decay half-lives of the order of [[microsecond]]s.<ref name=prc08ADNDT08>{{cite journal|journal=Physical Review C|volume=77|page=044603|year=2008|title=Search for long lived heaviest nuclei beyond the valley of stability|first1=P. Roy |last1=Chowdhury |first2=C. |last2=Samanta |first3= D. N. |last3=Basu|doi=10.1103/PhysRevC.77.044603|bibcode = 2008PhRvC..77d4603C|issue=4|arxiv = 0802.3837 |s2cid=119207807}}</ref><ref name="sciencedirect1">{{cite journal|journal=[[Atomic Data and Nuclear Data Tables]] |volume=94|pages=781–806|year=2008|title=Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130|author=Chowdhury, R. P.|author2=Samanta, C.|author3=Basu, D.N.|doi=10.1016/j.adt.2008.01.003|bibcode = 2008ADNDT..94..781C|issue=6|arxiv = 0802.4161 |s2cid=96718440}}</ref> Initial analysis revealed that no atoms of element 120 were produced, providing a limit of 400 [[barn (unit)|fb]] for the [[cross section (physics)|cross section]] at the energy studied.<ref name=Oganessian120>{{cite journal|journal=Phys. Rev. C|volume=79|page=024603|date=2009|title=Attempt to produce element 120 in the <sup>244</sup>Pu+<sup>58</sup>Fe reaction|doi=10.1103/PhysRevC.79.024603|last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu.|last4=Abdullin|first4=F.|last5=Polyakov|first5=A.|last6=Sagaidak|first6=R.|last7=Shirokovsky|first7=I.|last8=Tsyganov|first8=Yu.|last9=Voinov|first9=A.|issue=2 |bibcode = 2009PhRvC..79b4603O|display-authors=8 }}</ref> :{{nuclide|plutonium|244}} + {{nuclide|iron|58}} → <sup>302</sup>120* → no atoms The Russian team planned to upgrade their facilities before attempting the reaction again.<ref name=Oganessian120/> In April 2007, the team at the [[GSI Helmholtz Centre for Heavy Ion Research]] in [[Darmstadt]], Germany, attempted to create element 120 using [[uranium]]-238 and [[nickel]]-64:<ref name=GSI08>{{cite report|last=Hoffman|first=S.|display-authors=etal|title=Probing shell effects at Z=120 and N=184|date=2008|publisher=GSI Scientific Report|page=131}}</ref> :{{nuclide|uranium|238}} + {{nuclide|nickel|64}} → <sup>302</sup>120* → no atoms No atoms were detected, providing a limit of 1.6 [[barn (unit)|pb]] for the cross section at the energy provided. The GSI repeated the experiment with higher sensitivity in three separate runs in April–May 2007, January–March 2008, and September–October 2008, all with negative results, reaching a cross section limit of 90 fb.<ref name=GSI08/> In June–July 2010, and again in 2011, after upgrading their equipment to allow the use of more radioactive targets, scientists at the GSI attempted the more asymmetrical fusion reaction:<ref name=Hofmann2016/> :{{nuclide|curium|248}} + {{nuclide|chromium|54}} → <sup>302</sup>120 → no atoms It was expected that the change in reaction would quintuple the probability of synthesizing element 120,<ref>{{cite web |url=https://www.gsi.de/de/work/forschung/nustarenna/nustarenna_divisions/she_physik/research/super_heavy_elements/future_projects.htm |title=Searching for the island of stability |author=GSI |date= 2012-04-05|website=gsi.de |publisher=GSI |access-date=23 September 2016}}</ref> as the yield of such reactions is strongly dependent on their asymmetry.<ref name=Zagrebaev/> Three correlated signals were observed that matched the predicted alpha decay energies of <sup>299</sup>120 and its [[decay product|daughter]] <sup>295</sup>Og, as well as the experimentally known decay energy of its granddaughter <sup>291</sup>[[livermorium|Lv]]. However, the lifetimes of these possible decays were much longer than expected, and the results could not be confirmed.<ref name=Hoffman>{{cite web |url=https://jphysplus.iop.org/2015/10/02/weighty-matters-sigurd-hofmann-on-the-heaviest-of-nuclei/ |title=Weighty matters: Sigurd Hofmann on the heaviest of nuclei |last1=Adcock |first1=Colin |date=2 October 2015 |website=JPhys+ |access-date=23 September 2016 |archive-date=18 July 2023 |archive-url=https://web.archive.org/web/20230718025533/https://jphysplus.iop.org/2015/10/02/weighty-matters-sigurd-hofmann-on-the-heaviest-of-nuclei/ |url-status=dead }}</ref><ref>{{Citation |last=Hofmann |first=S. |title=Search for isotopes of element 120 on the island of shn |date=2015-05-12 |url=https://www.worldscientific.com/doi/abs/10.1142/9789814699464_0023 |work=Exotic Nuclei |pages=213–224 |publisher=WORLD SCIENTIFIC |doi=10.1142/9789814699464_0023 |bibcode=2015exon.conf..213H |isbn=978-981-4699-45-7 |access-date=2022-02-27|url-access=subscription }}</ref><ref name=Hofmann2016>{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }}</ref> In August–October 2011, a different team at the GSI using the TASCA facility tried a new, even more asymmetrical reaction:<ref name=Duellmann>{{cite web |url=http://www.yumpu.com/en/document/view/7293741/superheavy-element-research-superheavy-element-research |title=Superheavy Element Research: News from GSI and Mainz |last1=Düllmann |first1=C. E. |date=20 October 2011 |access-date=23 September 2016}}</ref><ref name=Yakushev/> :{{nuclide|californium|249}} + {{nuclide|titanium|50}} → <sup>299</sup>120* → no atoms This was also tried unsuccessfully the next year during the aforementioned attempt to make element 119 in the <sup>249</sup>Bk+<sup>50</sup>Ti reaction, as <sup>249</sup>Bk decays to <sup>249</sup>Cf. Because of its asymmetry,<ref>{{cite journal |last1=Siwek-Wilczyńska |first1=K. |last2=Cap |first2=T. |last3=Wilczyński |first3=J. |date=April 2010 |title=How can one synthesize the element ''Z'' = 120? |journal=International Journal of Modern Physics E |volume=19 |issue=4 |pages=500 |doi=10.1142/S021830131001490X|bibcode=2010IJMPE..19..500S }}</ref> the reaction between <sup>249</sup>Cf and <sup>50</sup>Ti was predicted to be the most favorable practical reaction for synthesizing unbinilium, although it is also somewhat cold. No unbinilium atoms were identified, implying a limiting cross-section of 200 fb.<ref name=Yakushev>{{cite web |url=http://asrc.jaea.go.jp/soshiki/gr/chiba_gr/workshop3/&Yakushev.pdf |title=Superheavy Element Research at TASCA |last1=Yakushev |first1=A. |date=2012 |website=asrc.jaea.go.jp |access-date=23 September 2016}}</ref> Jens Volker Kratz predicted the actual maximum cross-section for producing element 120 by any of these reactions to be around 0.1 fb;<ref name=Kratz/> in comparison, the world record for the smallest cross section of a successful reaction was 30 fb for the reaction <sup>209</sup>Bi(<sup>70</sup>Zn,n)<sup>278</sup>[[nihonium|Nh]],<ref name=Zagrebaev/> and Kratz predicted a maximum cross-section of 20 fb for producing the neighbouring element 119.<ref name=Kratz/> If these predictions are accurate, then synthesizing element 119 would be at the limits of current technology, and synthesizing element 120 would require new methods.<ref name=Kratz/> In May 2021, the JINR announced plans to investigate the <sup>249</sup>Cf+<sup>50</sup>Ti reaction in their new facility. However, the <sup>249</sup>Cf target would have had to be made by the [[Oak Ridge National Laboratory]] in the United States,<ref>{{cite web |url=http://www.jinr.ru/posts/how-are-new-chemical-elements-born/ |title=How are new chemical elements born? |last1=Sokolova |first1=Svetlana |last2=Popeko |first2=Andrei |date=24 May 2021 |website=jinr.ru |publisher=JINR |access-date=4 November 2021 |quote=Previously, we worked mainly with calcium. This is element 20 in the Periodic Table. It was used to bombard the target. And the heaviest element that can be used to make a target is californium, 98. Accordingly, 98 + 20 is 118. That is, to get element 120, we need to proceed to the next particle. This is most likely titanium: 22 + 98 = 120.<br/><br/>There is still much work to adjust the system. I don't want to get ahead of myself, but if we can successfully conduct all the model experiments, then the first experiments on the synthesis of element 120 will probably start this year.}}</ref> and after the [[Russian invasion of Ukraine]] began in February 2022, collaboration between the JINR and other institutes completely ceased due to sanctions.<ref name=ft>{{cite news |last=Ahuja |first=Anjana |date=18 October 2023 |title=Even the periodic table must bow to the reality of war |url=https://www.ft.com/content/6b6b0afc-39b2-4955-af5a-d0ea6b4d8306 |work=Financial Times |location= |access-date=20 October 2023}}</ref> Consequently, the JINR now plans to try the <sup>248</sup>Cm+<sup>54</sup>Cr reaction instead. A preparatory experiment for the use of <sup>54</sup>Cr projectiles was conducted in late 2023, successfully synthesising <sup>288</sup>Lv in the <sup>238</sup>U+<sup>54</sup>Cr reaction,<ref name=Lv288>{{cite news |url=http://www.jinr.ru/posts/v-lyar-oiyai-vpervye-v-mire-sintezirovan-livermorij-288/ |title=В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288 |trans-title=Livermorium-288 was synthesized for the first time in the world at FLNR JINR |language=ru |date=23 October 2023 |publisher=Joint Institute for Nuclear Research |access-date=18 November 2023}}</ref> and the hope is for experiments to synthesise element 120 to begin by 2025.<ref>{{cite news |last=Mayer |first=Anastasiya |date=31 May 2023 |language=ru |title="Большинство наших партнеров гораздо мудрее политиков" |trans-title=Most of our partners are much wiser than politicians |url=https://www.vedomosti.ru/technology/characters/2023/05/31/977789-bolshinstvo-nashih-partnerov-mudree-politikov |work=[[Vedomosti]] |location= |access-date=15 August 2023 |quote=В этом году мы фактически завершаем подготовительную серию экспериментов по отладке всех режимов ускорителя и масс-спектрометров для синтеза 120-го элемента. Научились получать высокие интенсивности ускоренного хрома и титана. Научились детектировать сверхтяжелые одиночные атомы в реакциях с минимальным сечением. Теперь ждем, когда закончится наработка материала для мишени на реакторах и сепараторах у наших партнеров в «Росатоме» и в США: кюрий, берклий, калифорний. Надеюсь, что в 2025 г. мы полноценно приступим к синтезу 120-го элемента.}}</ref> Starting from 2022,<ref name=usprogram/> plans have also been made to use 88-inch cyclotron in the [[Lawrence Berkeley National Laboratory]] (LBNL) in [[Berkeley, California]], United States to attempt to make new elements using <sup>50</sup>Ti projectiles.<ref>{{cite news |last=Chapman |first=Kit |date=10 October 2023 |title=Berkeley Lab to lead US hunt for element 120 after breakdown of collaboration with Russia |url=https://www.chemistryworld.com/news/berkeley-lab-to-lead-us-hunt-for-element-120-after-breakdown-of-collaboration-with-russia/4018207.article |work=Chemistry World |location= |access-date=20 October 2023}}</ref><ref>{{cite web |url=https://physicalsciences.lbl.gov/2023/10/16/berkeley-lab-to-test-new-approach-to-making-superheavy-elements/ |title=Berkeley Lab to Test New Approach to Making Superheavy Elements |last=Biron |first=Lauren |date=16 October 2023 |website=lbl.gov |publisher=[[Lawrence Berkeley National Laboratory]] |access-date=20 October 2023 |quote=}}</ref> First, the <sup>244</sup>Pu+<sup>50</sup>Ti reaction was tested, successfully creating two atoms of <sup>290</sup>Lv in 2024. Since this was successful, an attempt to make element 120 in the <sup>249</sup>Cf+<sup>50</sup>Ti reaction is planned to begin in 2025.<ref>{{cite web |url=https://newscenter.lbl.gov/2024/07/23/a-new-way-to-make-element-116-opens-the-door-to-heavier-atoms/ |title=A New Way to Make Element 116 Opens the Door to Heavier Atoms |last=Biron |first=Lauren |date=23 July 2024 |website=lbl.gov |publisher=Lawrence Berkeley National Laboratory |access-date=24 July 2024 |quote=}}</ref><ref>{{cite journal |last1=Bourzac |first1=Katherine |date=23 July 2024 |title=Heaviest element yet within reach after major breakthrough |url=https://www.nature.com/articles/d41586-024-02416-3 |journal=Nature |volume= |issue= |pages= |doi=10.1038/d41586-024-02416-3 |access-date=24 July 2024|url-access=subscription }}</ref><ref>{{cite news |last=Service |first=Robert F. |date=23 July 2024 |title=U.S. back in race to forge unknown, superheavy elements |url=https://www.science.org/content/article/u-s-back-race-forge-unknown-superheavy-elements |work=Science |location= |access-date=24 July 2024}}</ref> The [[Lawrence Livermore National Laboratory]] (LLNL), which previously collaborated with the JINR, will collaborate with the LBNL on this project.<ref>{{cite journal |last1=Nelson |first1=Felicity |date=15 August 2024 |title=How Japan Took the Lead in the Race to Discover Element 119 |url=https://pubs.acs.org/doi/10.1021/acscentsci.4c01266 |journal=ACS Central Science |volume= |issue= |pages= |doi=10.1021/acscentsci.4c01266 |access-date=13 September 2024|doi-access=free |pmc=11539895 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)