Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fermat's principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation to Hamilton's principle === If {{math|''x''}}, {{math|''y''}}, {{math|''z''}} are Cartesian coordinates and an overdot denotes differentiation with respect to {{mvar|s}}, Fermat's principle '''(2)''' may be written<ref>Cf. [[#Chaves16|Chaves, 2016]], pp.{{nnbsp}}568β9.</ref> <math display="block">\begin{align} \delta S &=\,\delta\int_A^B\!n_{\mathrm{r}}\,\sqrt{dx^2+dy^2+dz^2}\\ &=\,\delta\int_A^B\!n_{\mathrm{r}}\,\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}~ds \,=\,0\,. \end{align}</math> In the case of an isotropic medium, we may replace {{math|''n''<sub>r</sub>}} with the normal refractive index{{hsp}} {{math|''n''(''x'', ''y'', ''z'')}}, which is simply a [[scalar field]]. If we then define the ''optical [[Lagrangian mechanics|Lagrangian]]''<ref>[[#Chaves16|Chaves, 2016]], p.{{nnbsp}}581.</ref> as <math display="block">L(x,y,z,\dot{x},\dot{y},\dot{z}) \,=\, n(x,y,z)\,\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}\,,</math> Fermat's principle becomes<ref>[[#Chaves16|Chaves, 2016]], p.{{nnbsp}}569.</ref> <math display="block">\delta S =\, \delta\int_A^B\!L(x,y,z,\dot{x},\dot{y},\dot{z})\,ds\,=\,0\,.</math> If the direction of propagation is always such that we can use {{mvar|z}} instead of {{mvar|s}} as the parameter of the path (and the overdot to denote differentiation w.r.t. {{mvar|z}} instead of {{mvar|s}}), the optical Lagrangian can instead be written<ref>Cf. [[#Chaves16|Chaves, 2016]], p.{{nnbsp}}577.</ref> <math display="block">L\big(x(z),y(z),\dot{x}(z),\dot{y}(z),z\big) = n(x,y,z)\,\sqrt{1+\dot{x}^2+\dot{y}^2}\,,</math> so that Fermat's principle becomes <math display="block">\delta S =\, \delta\int_A^B\! L\big(x(z),y(z),\dot{x}(z),\dot{y}(z),z\big)\,dz\,=\,0.</math> This has the form of [[Hamilton's principle]] in classical mechanics, except that the time dimension is missing: the third spatial coordinate in optics takes the role of time in mechanics.<ref>Cf.{{tsp}} [[#BW|Born & Wolf, 2002]], pp.{{nnbsp}}853β4,{{px2}}868; [[#Chaves16|Chaves, 2016]], p.{{nnbsp}}669.</ref> The optical Lagrangian is the function which, when integrated w.r.t. the parameter of the path, yields the OPL; it is the foundation of [[Hamiltonian optics|Lagrangian and Hamiltonian optics]].<ref>[[#Chaves16|Chaves, 2016]], ch.{{nnbsp}}14.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)