Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fermat number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalized Fermat numbers== Numbers of the form <math>\frac{a^{2^n}+b^{2^n}}{gcd(a+b,2)}</math> with ''a'', ''b'' any [[coprime]] integers, {{nowrap|''a'' > ''b'' > 0}}, are called '''generalized Fermat numbers'''. An odd prime ''p'' is a generalized Fermat number if and only if ''p'' is congruent to [[Pythagorean prime|1 (mod 4)]]. (Here we consider only the case {{nowrap|''n'' > 0}}, so {{nowrap|1=3 = <math>2^{2^{0}} \!+ 1</math>}} is not a counterexample.) An example of a [[probable prime]] of this form is 200<sup>262144</sup> + 119<sup>262144</sup> (found by Kellen Shenton).<ref>[http://www.primenumbers.net/prptop/searchform.php?form=x%5E262144%2By%5E262144&action=Search PRP Top Records, search for x^262144+y^262144], by Henri & Renaud Lifchitz.</ref> By analogy with the ordinary Fermat numbers, it is common to write generalized Fermat numbers of the form <math>a^{2^{ \overset{n} {}}} \!\!+ 1</math> as ''F''<sub>''n''</sub>(''a''). In this notation, for instance, the number 100,000,001 would be written as ''F''<sub>3</sub>(10). In the following we shall restrict ourselves to primes of this form, <math>a^{2^{ \overset{n} {}}} \!\!+ 1</math>, such primes are called "Fermat primes base ''a''". Of course, these primes exist only if ''a'' is [[Parity (mathematics)|even]]. If we require {{nowrap|''n'' > 0}}, then [[Landau's problems|Landau's fourth problem]] asks if there are infinitely many generalized Fermat primes ''F<sub>n</sub>''(''a''). ===Generalized Fermat primes of the form F<sub>''n''</sub>(''a'')=== Because of the ease of proving their primality, generalized Fermat primes have become in recent years a topic for research within the field of number theory. Many of the largest known primes today are generalized Fermat primes. Generalized Fermat numbers can be prime only for [[even number|even]] {{mvar|a}}, because if {{mvar|a}} is [[odd number|odd]] then every generalized Fermat number will be divisible by 2. The smallest prime number <math>F_n(a)</math> with <math>n>4</math> is <math>F_5(30)</math>, or 30<sup>32</sup> + 1. Besides, we can define "half generalized Fermat numbers" for an odd base, a half generalized Fermat number to base ''a'' (for odd ''a'') is <math>\frac{a^{2^n} \!+ 1}{2}</math>, and it is also to be expected that there will be only finitely many half generalized Fermat primes for each odd base. In this list, the generalized Fermat numbers (<math>F_n(a)</math>) to an even {{mvar|a}} are <math>a^{2^n} \!+ 1</math>, for odd {{mvar|a}}, they are <math>\frac{a^{2^n} \!\!+ 1}{2}</math>. If {{mvar|a}} is a [[perfect power]] with an odd exponent {{OEIS|id=A070265}}, then all generalized Fermat number can be algebraic factored, so they cannot be prime. See<ref>{{cite web|url=http://jeppesn.dk/generalized-fermat.html|title=Generalized Fermat Primes|website=jeppesn.dk|access-date=7 April 2018}}</ref><ref>{{cite web|url=http://www.noprimeleftbehind.net/crus/GFN-primes.htm|title=Generalized Fermat primes for bases up to 1030|website=noprimeleftbehind.net|access-date=7 April 2018}}</ref> for even bases up to 1000, and<ref>{{cite web|url=http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt|title=Generalized Fermat primes in odd bases|website=fermatquotient.com|access-date=7 April 2018}}</ref> for odd bases. For the smallest number <math>n</math> such that <math>F_n(a)</math> is prime, see {{oeis|id=A253242}}. {|class="wikitable" !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime !<math>a</math> !numbers <math>n</math><br/>such that<br/><math>F_n(a)</math> is prime |- |2 |0, 1, 2, 3, 4, ... |18 |0, ... |34 |2, ... |50 |... |- |3 |0, 1, 2, 4, 5, 6, ... |19 |1, ... |35 |1, 2, 6, ... |51 |1, 3, 6, ... |- |4 |0, 1, 2, 3, ... |20 |1, 2, ... |36 |0, 1, ... |52 |0, ... |- |5 |0, 1, 2, ... |21 |0, 2, 5, ... |37 |0, ... |53 |3, ... |- |6 |0, 1, 2, ... |22 |0, ... |38 |... |54 |1, 2, 5, ... |- |7 |2, ... |23 |2, ... |39 |1, 2, ... |55 |... |- |8 | {{CNone|(none)}} |24 |1, 2, ... |40 |0, 1, ... |56 |1, 2, ... |- |9 |0, 1, 3, 4, 5, ... |25 |0, 1, ... |41 |4, ... |57 |0, 2, ... |- |10 |0, 1, ... |26 |1, ... |42 |0, ... |58 |0, ... |- |11 |1, 2, ... |27 | {{CNone|(none)}} |43 |3, ... |59 |1, ... |- |12 |0, ... |28 |0, 2, ... |44 |4, ... |60 |0, ... |- |13 |0, 2, 3, ... |29 |1, 2, 4, ... |45 |0, 1, ... |61 |0, 1, 2, ... |- |14 |1, ... |30 |0, 5, ... |46 |0, 2, 9, ... |62 |... |- |15 |1, ... |31 |... |47 |3, ... |63 |... |- |16 |0, 1, 2, ... |32 | {{CNone|(none)}} |48 |2, ... |64 | {{CNone|(none)}} |- |17 |2, ... |33 |0, 3, ... |49 |1, ... |65 |1, 2, 5, ... |} For the smallest even base {{mvar|a}} such that <math>F_n(a)</math> is prime, see {{oeis|id=A056993}}. The generalized Fermat prime ''F''<sub>14</sub>(71) is the largest known generalized Fermat prime in bases ''b'' β€ 1000, it is proven prime by [[elliptic curve primality proving]].<ref>[https://factordb.com/index.php?id=1100000000213085670 The entry of the generalized Fermat prime ''F''<sub>14</sub>(71) in the online factor database]</ref> {|class="wikitable" !<math>n</math> !bases {{mvar|a}} such that <math>F_n(a)</math> is prime (only consider even {{mvar|a}}) ![[OEIS]] sequence |- |0 |2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, ... |{{OEIS link|id=A006093}} |- |1 |2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, ... |{{OEIS link|id=A005574}} |- |2 |2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, ... |{{OEIS link|id=A000068}} |- |3 |2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680, 682, 732, 782, ... |{{OEIS link|id=A006314}} |- |4 |2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568, 598, 642, ... |{{OEIS link|id=A006313}} |- |5 |30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, ... |{{OEIS link|id=A006315}} |- |6 |102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, ... |{{OEIS link|id=A006316}} |- |7 |120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, ... |{{OEIS link|id=A056994}} |- |8 |278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, ... |{{OEIS link|id=A056995}} |- |9 |46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, ... |{{OEIS link|id=A057465}} |- |10 |824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, ... |{{OEIS link|id=A057002}} |- |11 |150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, ... |{{OEIS link|id=A088361}} |- |12 |1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, ... |{{OEIS link|id=A088362}} |- |13 |30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, ... |{{OEIS link|id=A226528}} |- |14 |67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, ... |{{OEIS link|id=A226529}} |- |15 |70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, ... |{{OEIS link|id=A226530}} |- |16 |48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, ... |{{OEIS link|id=A251597}} |- |17 |62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, ... |{{OEIS link|id=A253854}} |- |18 |24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, ... |{{OEIS link|id=A244150}} |- |19 |75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004, 8630170, 9332124, 10913140, 11937916, 12693488, 12900356, ... |{{OEIS link|id=A243959}} |- |20 |919444, 1059094, 1951734, 1963736, 3843236, ... |{{OEIS link|id=A321323}} |} The smallest even base ''b'' such that ''F''<sub>''n''</sub>(''b'') = ''b''<sup>2<sup>''n''</sup></sup> + 1 (for given ''n'' = 0, 1, 2, ...) is prime are :2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444, ... {{OEIS|id=A056993}} The smallest odd base ''b'' such that ''F''<sub>''n''</sub>(''b'') = (''b''<sup>2<sup>''n''</sup></sup> + 1)/2 (for given ''n'' = 0, 1, 2, ...) is prime (or [[probable prime]]) are :3, 3, 3, 9, 3, 3, 3, 113, 331, 513, 827, 799, 3291, 5041, 71, 220221, 23891, 11559, 187503, 35963, ... {{OEIS|id=A275530}} Conversely, the smallest ''k'' such that (2''n'')<sup>''k''</sup> + 1 (for given ''n'') is prime are :1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 4, 1, ... (The next term is unknown) {{OEIS|id=A079706}} (also see {{oeis|id=A228101}} and {{oeis|id=A084712}}) A more elaborate theory can be used to predict the number of bases for which <math>F_n(a)</math> will be prime for fixed <math>n</math>. The number of generalized Fermat primes can be roughly expected to halve as <math>n</math> is increased by 1. ===Generalized Fermat primes of the form F<sub>n</sub>(''a'', ''b'')=== It is also possible to construct generalized Fermat primes of the form <math>a^{2^n} + b^{2^n}</math>. As in the case where ''b''=1, numbers of this form will always be divisible by 2 if ''a+b'' is even, but it is still possible to define generalized half-Fermat primes of this type. For the smallest prime of the form <math>F_n(a,b)</math> (for odd <math>a+b</math>), see also {{oeis|id=A111635}}. {|class="wikitable" !<math>a</math> !<math>b</math> !numbers <math>n</math> such that<br/><math>F_n(a,b) = \frac{a^{2^n}+b^{2^n}}{\gcd(a+b, 2)}</math><br/>is prime<ref>{{cite web |title=Original GFN factors |url=http://www.prothsearch.com/OriginalGFNs.html |website=www.prothsearch.com}}</ref><ref name="bjorn"/> |- | 2 | 1 | 0, 1, 2, 3, 4, ... |- | 3 | 1 | 0, 1, 2, 4, 5, 6, ... |- | 3 | 2 | 0, 1, 2, ... |- | 4 | 1 | 0, 1, 2, 3, ... (equivalent to <math>F_n(2, 1)</math>) |- | 4 | 3 | 0, 2, 4, ... |- | 5 | 1 | 0, 1, 2, ... |- | 5 | 2 | 0, 1, 2, ... |- | 5 | 3 | 1, 2, 3, ... |- | 5 | 4 | 1, 2, ... |- | 6 | 1 | 0, 1, 2, ... |- | 6 | 5 | 0, 1, 3, 4, ... |- | 7 | 1 | 2, ... |- | 7 | 2 | 1, 2, ... |- | 7 | 3 | 0, 1, 8, ... |- | 7 | 4 | 0, 2, ... |- | 7 | 5 | 1, 4, |- | 7 | 6 | 0, 2, 4, ... |- | 8 | 1 | {{CNone|(none)}} |- | 8 | 3 | 0, 1, 2, ... |- | 8 | 5 | 0, 1, 2, |- | 8 | 7 | 1, 4, ... |- | 9 | 1 | 0, 1, 3, 4, 5, ... (equivalent to <math>F_n(3, 1)</math>) |- | 9 | 2 | 0, 2, ... |- | 9 | 4 | 0, 1, ... (equivalent to <math>F_n(3, 2)</math>) |- | 9 | 5 | 0, 1, 2, ... |- | 9 | 7 | 2, ... |- | 9 | 8 | 0, 2, 5, ... |- | 10 | 1 | 0, 1, ... |- | 10 | 3 | 0, 1, 3, ... |- | 10 | 7 | 0, 1, 2, ... |- | 10 | 9 | 0, 1, 2, ... |- | 11 | 1 | 1, 2, ... |- | 11 | 2 | 0, 2, ... |- | 11 | 3 | 0, 3, ... |- | 11 | 4 | 1, 2, ... |- | 11 | 5 | 1, ... |- | 11 | 6 | 0, 1, 2, ... |- | 11 | 7 | 2, 4, 5, ... |- | 11 | 8 | 0, 6, ... |- | 11 | 9 | 1, 2, ... |- | 11 | 10 | 5, ... |- | 12 | 1 | 0, ... |- | 12 | 5 | 0, 4, ... |- | 12 | 7 | 0, 1, 3, ... |- | 12 | 11 | 0, ... |- |} ===Largest known generalized Fermat primes=== The following is a list of the ten largest known generalized Fermat primes.<ref name="Top Twenty's Generalized Fermat Primes">{{cite web|title=The Top Twenty: Generalized Fermat|url=http://primes.utm.edu/top20/page.php?id=12|work=The Prime Pages|first=Chris K.|last=Caldwell|access-date=5 October 2024}}</ref> The whole top-10 is discovered by participants in the [[PrimeGrid]] project. {| class="wikitable" style="text-align:right" |- ! Rank ! Prime number ! Generalized Fermat notation ! Number of digits ! Discovery date ! ref. |- | 1 | 4Γ5<sup>11786358</sup> + 1 | ''F''<sub>1</sub>(2Γ5<sup>5893179</sup>) | 8,238,312 | style="text-align:left" | Oct 2024 |<ref>[https://t5k.org/primes/page.php?id=138596 4Γ5<sup>11786358</sup> + 1]</ref> |- | 2 | 3843236<sup>1048576</sup> + 1 | ''F''<sub>20</sub>(3843236) | 6,904,556 | style="text-align:left" | Dec 2024 |<ref>[https://t5k.org/primes/page.php?id=138830 3843236<sup>1048576</sup> + 1]</ref> |- | 3 | 1963736<sup>1048576</sup> + 1 | ''F''<sub>20</sub>(1963736) | 6,598,776 | style="text-align:left" | Sep 2022 |<ref>[https://t5k.org/primes/page.php?id=134423 1963736<sup>1048576</sup> + 1]</ref> |- | 4 | 1951734<sup>1048576</sup> + 1 | ''F''<sub>20</sub>(1951734) | 6,595,985 | style="text-align:left" | Aug 2022 |<ref>[https://t5k.org/primes/page.php?id=134298 1951734<sup>1048576</sup> + 1]</ref> |- | 5 | 1059094<sup>1048576</sup> + 1 | ''F''<sub>20</sub>(1059094) | 6,317,602 | style="text-align:left" | Nov 2018 |<ref>[https://t5k.org/primes/page.php?id=125753 1059094<sup>1048576</sup> + 1]</ref> |- | 6 | 919444<sup>1048576</sup> + 1 | ''F''<sub>20</sub>(919444) | 6,253,210 | style="text-align:left" | Sep 2017 |<ref>[https://t5k.org/primes/page.php?id=123875 919444<sup>1048576</sup> + 1]</ref> |- | 7 | 81Γ2<sup>20498148</sup> + 1 | ''F''<sub>2</sub>(3Γ2<sup>5124537</sup>) | 6,170,560 | style="text-align:left" | Jun 2023 |<ref>[https://t5k.org/primes/page.php?id=136165 81Γ2<sup>20498148</sup> + 1]</ref> |- | 8 | 4Γ5<sup>8431178</sup> + 1 | ''F''<sub>1</sub>(2Γ5<sup>4215589</sup>) | 5,893,142 | style="text-align:left" | Jan 2024 |<ref>[https://t5k.org/primes/page.php?id=136831 4Γ5<sup>8431178</sup> + 1]</ref> |- | 9 | 4Γ3<sup>11279466</sup> + 1 | ''F''<sub>1</sub>(2Γ3<sup>5639733</sup>) | 5,381,674 | style="text-align:left" | Sep 2024 |<ref>[https://t5k.org/primes/page.php?id=138515 4Γ3<sup>11279466</sup> + 1]</ref> |- | 10 | 25Γ2<sup>13719266</sup> + 1 | ''F''<sub>1</sub>(5Γ2<sup>6859633</sup>) | 4,129,912 | style="text-align:left" | Sep 2022 |<ref>[https://t5k.org/primes/page.php?id=134407 25Γ2<sup>13719266</sup> + 1]</ref> |} On the [[Prime Pages]] one can find the [https://t5k.org/top20/page.php?id=12 current top 20 generalized Fermat primes] and the [https://t5k.org/primes/search.php?Comment=Generalized+Fermat&OnList=all&Number=100&Style=HTML current top 100 generalized Fermat primes].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)