Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Conformable fractional derivative === The conformable fractional derivative of a function <math>f</math> of order <math>\alpha</math> is given by<math display="block"> T_a(f)(t) = \lim_{\epsilon \rightarrow 0}\frac{f\left(t+\epsilon t^{1-\alpha}\right) - f(t)}{\epsilon} </math>Unlike other definitions of the fractional derivative, the conformable fractional derivative obeys the [[Product rule|product]] and [[quotient rule]] has analogs to [[Rolle's theorem]] and the [[mean value theorem]].<ref>{{Cite journal |last1=Khalil |first1=R. |last2=Al Horani |first2=M. |last3=Yousef |first3=A. |last4=Sababheh |first4=M. |date=2014-07-01 |title=A new definition of fractional derivative |url=https://www.sciencedirect.com/science/article/pii/S0377042714000065 |journal=Journal of Computational and Applied Mathematics |volume=264 |pages=65β70 |doi=10.1016/j.cam.2014.01.002 |issn=0377-0427|doi-access=free }}</ref><ref name=":0">{{Cite journal |last1=Gao |first1=Feng |last2=Chi |first2=Chunmei |date=2020 |title=Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations |journal=Journal of Function Spaces |language=en |volume=2020 |issue=1 |pages=5852414 |doi=10.1155/2020/5852414 |doi-access=free |issn=2314-8888}}</ref> However, this fractional derivative produces significantly different results compared to the Riemann-Liouville and Caputo fractional derivative. In 2020, Feng Gao and Chunmei Chi defined the improved Caputo-type conformable fractional derivative, which more closely approximates the behavior of the Caputo fractional derivative:<ref name=":0" /><math display="block"> ^C_a\widetilde{T}_a(f)(t) = \lim_{\epsilon \rightarrow 0}\left[(1-\alpha)(f(t)-f(a))+\alpha\frac{f\left(t+\epsilon (t-a)^{1-\alpha}\right) - f(t)}{\epsilon}\right] </math>where <math>a</math> and <math>t</math> are [[real numbers]] and <math>a<t</math>. They also defined the improved Riemann-Liouville-type conformable fractional derivative to similarly approximate the Riemann-Liouville fractional derivative:<ref name=":0" /> <math display="block"> ^{RL}_a\widetilde{T}_a(f)(t) = \lim_{\epsilon \rightarrow 0}\left[(1-\alpha)f(t)+\alpha\frac{f\left(t+\epsilon (t-a)^{1-\alpha}\right) - f(t)}{\epsilon}\right] </math>where <math>a</math> and <math>t</math> are [[real numbers]] and <math>a<t</math>. Both improved conformable fractional derivatives have analogs to Rolle's theorem and the [[interior extremum theorem]].<ref>{{Cite journal |last=Hasanah |first=Dahliatul |date=2022-10-31 |title=On continuity properties of the improved conformable fractional derivatives |url=http://mail.fourier.or.id/index.php/FOURIER/article/view/176 |journal=Jurnal Fourier |language=en |volume=11 |issue=2 |pages=88β96 |doi=10.14421/fourier.2022.112.88-96 |issn=2541-5239|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)