Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General relativity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Gravitational time dilation and frequency shift === {{Main|Gravitational time dilation}} [[File:Gravitational red-shifting.png|thumb|Schematic representation of the gravitational redshift of a light wave escaping from the surface of a massive body]] Assuming that the equivalence principle holds,<ref>{{Harvnb|Rindler|2001|pp=24–26 vs. pp. 236–237}} and {{Harvnb|Ohanian|Ruffini|1994|pp=164–172}}. Einstein derived these effects using the equivalence principle as early as 1907, cf. {{Harvnb|Einstein|1907}} and the description in {{Harvnb|Pais|1982|pp=196–198}}</ref> gravity influences the passage of time. Light sent down into a [[gravity well]] is [[blueshift]]ed, whereas light sent in the opposite direction (i.e., climbing out of the gravity well) is [[redshift]]ed; collectively, these two effects are known as the gravitational frequency shift. More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation.<ref>{{Harvnb|Rindler|2001|pp=24–26}}; {{Harvnb|Misner|Thorne|Wheeler|1973 |loc=§ 38.5}}</ref> Gravitational redshift has been measured in the laboratory<ref>[[Pound–Rebka experiment]], see {{Harvnb|Pound|Rebka|1959}}, {{Harvnb|Pound|Rebka|1960}}; {{Harvnb|Pound|Snider|1964}}; a list of further experiments is given in {{Harvnb|Ohanian|Ruffini|1994|loc=table 4.1 on p. 186}}</ref> and using astronomical observations.<ref>{{Harvnb|Greenstein|Oke|Shipman|1971}}; the most recent and most accurate Sirius B measurements are published in {{Harvnb|Barstow, Bond et al.|2005}}.</ref> Gravitational time dilation in the Earth's gravitational field has been measured numerous times using [[atomic clocks]],<ref>Starting with the [[Hafele–Keating experiment]], {{Harvnb|Hafele|Keating|1972a}} and {{Harvnb|Hafele|Keating|1972b}}, and culminating in the [[Gravity Probe A]] experiment; an overview of experiments can be found in {{Harvnb|Ohanian|Ruffini|1994|loc=table 4.1 on p. 186}}</ref> while ongoing validation is provided as a side effect of the operation of the [[Global Positioning System]] (GPS).<ref>GPS is continually tested by comparing atomic clocks on the ground and aboard orbiting satellites; for an account of relativistic effects, see {{Harvnb|Ashby|2002}} and {{Harvnb|Ashby|2003}}</ref> Tests in stronger gravitational fields are provided by the observation of [[binary pulsar]]s.<ref>{{Harvnb|Stairs|2003}} and {{Harvnb|Kramer|2004}}</ref> All results are in agreement with general relativity.<ref>General overviews can be found in section 2.1. of Will 2006; Will 2003, pp. 32–36; {{Harvnb|Ohanian|Ruffini|1994|loc=sec. 4.2}}</ref> However, at the current level of accuracy, these observations cannot distinguish between general relativity and other theories in which the equivalence principle is valid.<ref>{{Harvnb|Ohanian|Ruffini|1994|pp=164–172}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)